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ABSTRACT/RESUME

Miracle or Myth?
Assessing the macroeconomic productivity gains from Artificial Intelligence

The paper studies the expected macroeconomic productivity gains from Atrtificial Intelligence (Al) over a
10-year horizon. It builds a novel micro-to-macro framework by combining existing estimates of micro-level
performance gains with evidence on the exposure of activities to Al and likely future adoption rates, relying
on a multi-sector general equilibrium model with input-output linkages to aggregate the effects. Its main
estimates for annual aggregate total-factor productivity growth due to Al range between 0.25-0.6
percentage points (0.4-0.9 pp. for labour productivity). The paper discusses the role of various channels
in shaping these macro-level gains and highlights several policy levers to support Al's growth-enhancing
effects.

Keywords: Artificial Intelligence, Productivity, Technology adoption.
JEL Codes: C6, E1, O3, 04, 05.
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Miracle ou Mythe?
Evaluer les gains de productivité macroéconomiques de l'intelligence artificielle

L’article étudie les gains espérés de productivité macroéconomique liés a la diffusion des technologies
d’Intelligence Artificielle (IA) sur un horizon de dix ans. Il propose un modéle d’équilibre général
multisectoriel qui intégre les interdépendances sectorielles entre entreprises et rend possible une
agrégation au niveau macroéconomique des gains de productivité microéconomiques, compte tenu des
différentes hypothéses d’exposition et d’adoption de I'lA dans chaque secteur. Le principal résultat du
modele est une estimation de la croissance annuelle de la productivité totale des facteurs attribuable a la
diffusion de I'lA, dans une fourchette de 0,25 a 0,6 points de pourcentage (p.p), soit I'équivalent d’une
augmentation de 0,4 a 0,9 p.p de la productivité du travail a un horizon de dix ans. L’article quantifie
limportance relative des différents mécanismes de ces gains de productivité agrégés et met en évidence
plusieurs leviers de politique publique pour maximiser les gains potentiels de I'l|A sur la croissance a long
terme.

Mots clés : Intelligence Atrtificielle, Productivité, Adoption des technologies.

Codes JEL : C6, E1, O3, 04, 05.
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Miracle or Myth? Assessing the
macroeconomic productivity gains from
Artificial Intelligence

By Francesco Filippucci, Peter Gal, and Matthias Schief'

1. Introduction

Raising productivity growth is a priority for most OECD countries, which have experienced long-standing
weak productivity performance, weighing on incomes and well-being.? Artificial Intelligence (Al) with its
rapidly expanding capabilities is emerging as a new General Purpose Technology (GPT), comparable to
earlier digital technologies such as the internet and personal computers, or previous breakthrough
innovations like the steam engine and electricity (Varian, 2019; Agrawal, Gans and Goldfarb, 2019; Lipsey,
Carlaw and Bekar, 2005). Generally, past inventions eventually led to periods of accelerated economic
growth. Can Al play a similar role now and revive productivity growth? To study this question, the paper
provides a range of estimates on Al's aggregate productivity effects over a 10-year horizon, using a novel
framework to illustrate the role of various channels and conditions in helping achieve substantial
macroeconomic gains.®

New advances in Al, in particular Generative Al (GenAl) based on Large Language Models, improve the
performance of users in various tasks, previously thought unaffected by automation technology due to their

" Corresponding authors: Francesco Filippucci (Erancesco.Filippucci@oecd.org), Peter Gal (Peter.Gal@oecd.org),
and Matthias Schief (Matthias.Schief@oecd.org), all from the OECD Economics Department. The authors would like
to thank Asa Johansson, Tomasz Kozluk, Alvaro Pereira, Alain de Serres, and Filiz Unsal (all from the OECD
Economics Department ) for their valuable guidance and Christophe André, Manuel Betin, Sean Dougherty, Max
Glanville, David Haugh, Sebastien Turban, David Turner (all from the OECD Economics Department), Stijn Broecke
(OECD Directorate for Employment, Labour and Social Affairs), Flavio Calvino, Charles-Edouard Van De Put, the Al
and Emerging Digital Technologies Division (OECD Directorate for Science, Technology and Innovation), as well as
delegates to the Working Party 1 (WP1) of the OECD Economic Policy Committee (EPC) for useful comments and
suggestions. The authors would also like to thank Sarah Michelson-Sarfati for excellent editorial support.

2 See Fernald, Inklaar and Ruzic (2024); Goldin et al (2024); André and Gal (2024); OECD (2015) among others.

A 10-year horizon allows us to capture a relatively long-term effect and remain comparable to most existing studies,
while avoiding considering more speculative scenarios for the very long term, including the possibility of faster
innovation and explosive growth (singularity; Nordhaus, 2021; Aghion, Jones and Jones, 2019; Trammell and Korinek,
2023). On the other hand, it is sufficiently long that the initial adjustment costs related to the adoption and integration
of Al may be disregarded. The baseline results are obtained for the United States, given the availability of estimates
needed to derive sector-level productivity gains. Under further assumptions, the calculations are then extended to
other G7 countries (see more details below).
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strong cognitive content and high knowledge intensity. In particular, micro-level empirical studies show
large gains in the performance of workers when using Al in several business contexts: among customer
service agents, by 14%, among business consultants, by nearly 40%, and among software programmers,
by more than 50%.4 In light of Al's impressive capabilities to boost productivity at the individual level, it is
sometimes taken for granted that aggregate gains from Al will also be very large.

However, it is not guaranteed that micro gains in a few tasks translate to comparable gains at the macro
level. First, many tasks cannot currently be carried out or supported by Al since it primarily impacts
cognitive, knowledge intensive activities (ICT, finance, professional services), while tasks that have a
strong physical component (e.g. construction, large parts of manufacturing and personal services) are
much less affected. Second, not all firms and workers find it yet worthwhile or feasible to adopt the
technology; adoption rates measured in official statistics are still low and their future evolution is a key
uncertainty.® Third, general equilibrium mechanisms and production networks imply that aggregate gains
from Al may differ from the simple sum of sectoral gains. For example, unresponsive demand to price
declines for the type of activities where Al improves productivity (due to a rapid saturation in demand, e.g.
in the case of legal services) may induce strong sectoral reallocation to sectors with lower gains from Al
and reduce aggregate growth.

Recent work that quantifies the macroeconomic effects of Generative Al provides very different
assessments regarding its capacity to revive sluggish productivity growth (Figure 1). For instance, Briggs
and Kodnani (2023) suggests an optimistic view based on their large aggregate productivity growth
estimates, amounting to 1.5 percentage point (p.p.) labour productivity boost per year, comparable to the
size of total productivity growth observed over the past decades.® In contrast, Acemoglu’s (2024)
assessment is much more cautious, based on the small growth effects (on the order of 0.1 p.p. labour
productivity gains per year)’ he projects using a task-based aggregation framework and Hulten’s (1978)
theorem.® Aghion and Bunel (2024) use the framework in Acemoglu (2024) but rely on different

4 Previous non-Generative Al already showed important advances such as reaching human level image recognition,
and sophisticated predictive analytics. See Filippucci et al. (2024) and Lorenz, Perset and Berryhill (2023) for more on
Al and Gen Al capabilities in particular. Researchers also report high expectations about Al's potential to improve their
own productivity and ultimately speed up innovation, with interesting advances already in protein folding, genetics or
mathematics. This channel is outside the scope of this paper, however, given the lack of quantifiable evidence on this
mechanism and given that its impact would likely materialise over a longer horizon than our 10-year window.

5 McElharan et al (2023); US Census Business Trends and Outlook Survey (reporting around 5% adoption rate among
US firms in 2024) and Eurostat statistics on “Use of artificial intelligence in enterprises” (reporting 8% adoption among
firms in the EU in 2023).

6 A more recent work by authors in Goldman Sachs (2024) expresses more cautious views about the economic benefits
of Al, especially in the context of high but volatile stock market valuations and their justifiability. Further estimates
include Bergeaud (2024), Rockall, Pizzinelli and Tavares (2024), McKinsey (2023) and JP Morgan (2024). Theoretical
approaches scan an even broader range of possibilities for Ai’'s growth potential: Aghion, Jones and Jones (2019) and
Trammell and Korinek (2023) and explore scenarios that could lead to explosive growth, and limiting factors through
factor and demand reallocation, such as Baumol’s growth disease.

" More specifically, Acemoglu (2024) calculates overall TFP gains of 0.66 percent over 10 years, and also suggests
GDP gains of 1.16 percent (which translate into labour productivity gains, given that total labour is fixed in has
framework). Annualising this figure and interpreting it as percentage point increase in growth yields 0.12pp per year
labour productivity boost.

8 Hulten's (1978) theorem states that in a competitive economy with constant returns to scale the impact of micro-level
(e.g., sectoral or firm-level) productivity gains on aggregate productivity growth can be approximated to a first order as
the weighted sum of the micro-level productivity gains, where the weight of a given sector or firm is given by the ratio
of its gross sales to GDP (i.e., its Domar weight). See further explanation and discussion in Section 2.3 and in Annex
1.
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assumptions from the literature to arrive at numbers that are in between but closer to the optimistic end of
the spectrum (around 1 p.p. point boost).

Figure 1. Al's predicted macro-level productivity gains vary substantially across studies

Predicted increase in annual labour productivity growth over a 10-year horizon due to Al (in percentage points)

3.5
3
2.5
2
1.5
1
) I I I I
0 L . [ —
Baily, McKinsey Goldman IMF Aghion and Bergeaud Acemoglu
Brynjolfsson (2023, Global) Sachs (2024, UK) Commlsswnof Bunel (2024, EA) (2024, USA)
and Korinek (2023, USA) France (2024, USA)
(2023, USA) (2024, FRA)

Note: When the source presents a range of estimates as the main result, the lower and upper bounds are indicated by striped areas. In cases
where modelling predictions primarily focus on TFP, labour productivity is obtained using simple assumptions about the aggregate capital
multiplier (Acemoglu, 2024; Aghion and Bunel, 2024; Bergeaud, 2024). The estimates refer to the countries shown in brackets.

Sources: See references at the end of the paper; for Goldman Sachs (2023), the underlying reference is Briggs and Kodnani (2023); for IMF
(2024) the underlying reference is Rockall, Pizzinelli and Tavares (2024).

Our key contributions to the debate are twofold. First, we systematically document the role of various
channels that determine macro-level gains by providing scenarios derived from different assumptions.
These scenarios include expanded Al capabilities, either within cognitive activities augmented by
additional, complementary digital tools (software) or extended to physical tasks through further integration
with robotics technologies (e.g. autonomous vehicles). Second, we explicitly study the role of general
equilibrium mechanisms — in particular reallocation across sectors following demand responses to the Al-
driven supply shock and changing input-output linkages — that can shape the size of aggregate gains and
which go beyond the first-order approximation provided by Hulten’s theorem (Bagaee and Farhi, 2019).
Sectoral reallocation over the long run can play a moderating role to aggregate growth through Baumol’s
growth disease, as argued by Aghion, Jones and Jones (2019) and demonstrated in historical episodes
(Nordhaus, 2008) as well as by new calculations presented in this paper.® In the context of reallocation,
considering input-output links is important as Al gains emanating from the most affected sectors — currently,

9 This role of long-term cross-sectoral reallocation is distinct from that of short- to medium term adjustment to shocks
especially within sectors. Within sector reallocation contributes significantly to sector level productivity growth as firms
with increased productivity attract more resources in subsequent years (Decker et al., 2020; Calligaris et al., 2023).
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knowledge intensive services such as ICT services, finance and professional services — can also expand
production in downstream sectors — such as manufacturing industries.

We assess the macroeconomic productivity gains from Al by proceeding in two broad steps (Figure 2).
First, we calculate expected sector-level productivity growth from Al by combining estimates from the
growing literature on (1) micro (worker) level performance gains from Al, (2) the share of production tasks
that can be improved by Al (exposure; Eloundou et al., 2024)'°, and (3) the extent of Al adoption across
firms (adoption; Filippucci et al., 2024). This step builds on Acemoglu (2024) and adapts it to our sector-
level setting.’ Second, we aggregate these sector-level gains using a multi-sector general equilibrium
model that is calibrated to the observed structure of the economy and accounts for sectoral input-output
linkages, the role of demand in driving price adjustments, and factor reallocation across sectors (Baqaee
and Farhi, 2019).

Figure 2. The framework for aggregating Al's productivity gains from micro-to-macro

Step 1: Deriving sector-level Step 2: Aggregating sectoral gains to obtain
productivity gains macro-level effects (general equilibrium)
(1) (2) (3) Input- Sectoral
Micro-level Exposure | Adoption output reallocation,
gains for of tasks over time linkages induced by price
workers at within changes
the task-level sectors (demand)

Through a theoretical model

Relying on estimates from current literature calibrated to economic structures
and on experience with previous GPTs (Value added and input shares,
input-output links)

Note: Step 1. is inspired by Acemoglu (2024), adapted to our sector-level framework. Step 2. builds on the multi-sector model in Bagaee and
Farhi (2019).
Source: Authors’ elaboration.

The model’s predictions are calculated under different sets of assumptions (scenarios). Some assumptions
concern Al development and use, such as capabilities — determining micro level gains and exposure — and
future adoption and diffusion. Other assumptions are more related to structural features of the economy
that can influence the potential macroeconomic gains. Such structural features include: (1) frictions that
inhibit factor (e.g. labour) reallocation across sectors, such as adjustment costs related to workers
changing jobs across different sectors; and (2) low elasticity of demand to the relative price changes
resulting from Al-driven differences in productivity growth across sectors — broadly speaking, another
source of adjustment friction to the Al driven shock.'?

10 Upcoming OECD work by Calvino, Dernis and Samek (2024) provides a sectoral taxonomy of Al which could provide
an alternative source of assessing cross-sectoral differences in exposure.

" This step is also adopted by Aghion and Bunel (2024) and Bergeaud (2024). See more in Section 2.

12 This friction emphasises the possibility that even though Al leads to varying productivity gains across different
sectors, resulting in changes in relative prices, the demand for goods and services may not significantly adjust in
response to these price changes, possibly due to a rapid saturation of demand. A similar phenomenon happened with
industries impacted by previous waves of productivity improvements, although over very long periods (e.g. textiles and
the automation of their production; see Bessen, 2018). The responsiveness of demand is also related to the social
acceptability of Al (e.g. in the legal system: will people accept Al judges?), explored in Cazzaniga et al. (2024).

MIRACLE OR MYTH? ASSESSING THE MACROECONOMIC PRODUCTIVITY GAINS FROM ARTIFICIAL INTELLIGENCE © OECD 2024

Restricted Use - A usage restreint



10 |

The main scenarios in this paper suggest that Al will significantly contribute to annual Total Factor
Productivity (TFP) growth in the US by around 0.25-0.6 p.p. This implies around 0.4-0.9 p.p. contribution
to annual labour productivity growth, when assuming a standard capital multiplier of 1.5. To put these
figures into perspective, US annual TFP growth was around 1 percent and labour productivity growth
around 1.5 percent in the US, and even lower for the OECD, over the past two decades. Our estimates
thus indicate that Generative Al will likely be an important source of aggregate productivity growth over the
next 10 years, even though current Al technology alone is unlikely to bring productivity growth back to the
levels seen in the 1960s.'® For comparison, the latest technology driven boom linked to information and
communication technologies (ICT) has been estimated to have contributed up to 1-1.5 percentage points
to annual US TFP growth during the 1995-2004 period (Byrne et al, 2013; Bunel et al, 2024)". This is
higher than the range for Al-driven gains in our main scenarios — however, if Al capabilities become
applicable in a wider range of activities, notably thanks to further integration with robotics technologies, we
find comparable effects.

Our scenarios yield the following broad lessons about the importance of various factors influencing the
size of the expected gains:

e First, high and widespread adoption across many sectors of the economy, along with expanded Al
capabilities — notably via the development of complementary digital tools or further integration with
robotics technologies — is a key driver of achieving higher aggregate TFP gains.

e Second, if Al's sector-level productivity gains remain concentrated in a few sectors, inelastic
demand and adjustment frictions related to factor reallocation can lower the aggregate productivity
gains due to “Baumol’s growth disease” (Baumol, 1967; Nordhaus, 2008)."® The size of this drag
is not large in our main scenarios, on the order of 0.1 percentage point lower annual TFP growth,
which is a sixth of the total growth benefits. However, a stronger concentration and larger disparity
across sectors — which are more consistent with historically observed dispersion in sectoral
productivity performance — can lead to a reduction of the aggregate gains by nearly a third by
increasing the effect of “Baumol’s growth disease”.

e Third, if physical or manual tasks are also exposed to Al, notably thanks to further integration with
robotics technologies, the productivity benefits will also be more widespread across sectors, with
no negative drag from reallocation frictions. This leads to a very substantial aggregate growth
impact of around 1pp per year.

These results are obtained from calibrating the model and the determinants of sectoral productivity gains
— micro-level gains, the likely adoption paths and the exposure of activities to Al — to the United States. In
addition, we also illustrate cross-country differences among G7 economies regarding Al's productivity
impact by relying on variation in country-specific sectoral structures (observed through national I-O tables
and the occupational compositions of sectors), and by assuming different adoption rates of Al (building on

B3 The expected productivity gains from Al should not necessarily be seen as an extra boost over existing rates, since
Al's impact may already be appearing in recent productivity figures. Additionally, past forecasts of productivity growth
often assumed ongoing technological advancements, potentially encompassing Al developments. Al represents a
continuation of digital technologies that have been contributing to productivity growth.

4 EU countries mostly missed out on these gains, however, which points to the importance of cross-country
differences and the potential role of policy settings in reaping the economic benefits of technological waves (Van Ark,
O’Mahoney and Timmer, 2008).

15 The differential performance across sectors can lead to a drag on aggregate through other mechanisms which we
do not incorporate, such as the sectoral bottlenecks channel (Acemoglu, Autor and Patterson, 2024). This captures
the idea that when the productivity of input producers improves at a highly different pace, then the productivity of
downstream producers — who combine those inputs — will suffer.
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the currently observed large cross-country variation).'® We find that the combined effect of these
differences leads to substantial variation in the size of the expected productivity impacts from Al across
countries, driven primarily by adoption patterns as well as by sectoral exposure to Al. In particular, in most
scenarios, gains of comparable size to the ones obtained for the US arise in Germany and Canada; while
in France and lItaly, the expected gains would be about half of that. In scenarios where frictions are
assumed to be more important, differences in the sectoral linkages of the economy also play a role,
resulting, for example, in lower predicted aggregate gains for Germany and Japan likely related to the
details of the input-output structure (e.g. stronger reliance on specific upstream sectors).

Our findings imply that the macro-level productivity gains from Al depend on several conditions and should
not be taken for granted by extrapolating from the important micro-level benefits in specific tasks. As also
stressed by the OECD Principles on Artificial Intelligence'’, governments have a key role to play in
ensuring trustworthy Al development, deployment and use which in turn benefit the economy and society.
In particular, the broader, macroeconomic productivity impacts from Al can be influenced through several
policy areas:

1. Al diffusion and adoption: Governments can support the capabilities of firms to adopt Al in a wide
range of sectors through educational and skills development policies (OECD, 2023c) and via
improving access to digital technologies, including through liberalised digital trade (OECD, 2023d).
Governments can also support incentives to adopt Al by ensuring that markets remain competitive
and incumbency advantage does not translate into persistent gains which discourages technology
adoption by lagging firms or potential new entrants (Aghion and Bunel, 2024; Calligaris et al, 2024;
Berlingieri et al, 2020). Ensuring that open-source solutions remain a viable alternative to closed
ones would also facilitate diffusion (Andre et al, 2024).

2. Demand for Al powered goods and services: Trustworthiness is key to ensure demand for Al
powered goods and services will meet supply and thus enable broad-based macroeconomic
productivity gains. Governments need to strike a balance between ensuring safety and reliability
of Al for the user while at the same time not discouraging experimentation and further development
of Al technologies. An important focus should be on improving transparency about the capabilities
of the technology, and by resolving legal uncertainties about accountability (OECD, 2019a).

3. Reallocation of factors: Governments should support workers in transitioning between jobs and
across sectors through re-training and other labour market policies (Causa et al., 2022). The
productive allocation of capital should also be facilitated through well-developed financial systems,
in particular with measures that recognise the growing importance of intangibles (Demmou and
Franco, 2021).

The next section presents the conceptual framework, discussing the assumptions, the modelling choices,
as well as caveats and potential enrichments. Section 3 describes the results along several scenarios and
illustrations, including extensions to other countries than the US. Section 4 concludes with a brief
discussion and potential future extensions.

16 \We plan to extend the set of countries to OECD and potentially beyond.

7 OECD (2024c) and https://oecd.ai/en/ai-principles. See also Acemoglu, Autor and Johnson (2023) and Baily,
Brynjolfsson and Korinek (2023) for a discussion of how the development and use of Al could be shaped to ensure
broader societal benefits that go beyond the more specific question of productivity growth which is our focus here.
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2. Conceptual framework, assumptions, and modelling choices

2.1. Quantifying Al’s aggregate productivity effects: from micro to macro

A fast-growing body of research provides estimates of the expected performance gains from Al at the
individual worker or firm level.’® But how do these microeconomic gains translate into aggregate
productivity growth? Answering this question requires a suitable macroeconomic framework, and there are
several approaches taken in the recent literature (Table 1):

e Briggs and Kodnani (2023) derive aggregate productivity effects starting from gains observed in
firms using Al. They introduce a set of assumptions about labour substitution and reallocation to
arrive at aggregate effects, without relying explicitly on a formal theoretical model.

e Acemoglu (2024), and, building on him, Aghion and Bunel (2024) and Bergeaud (2024), derive
aggregate gains in a task-based theoretical framework (Acemoglu and Restrepo, 2018) by
aggregating worker-level performance gains from Al in specific tasks - identified in the literature -
to macroeconomic gains. The advantage of this approach is that it builds on micro-level evidence
on Al capabilities and offers a consistent way to translate them to aggregate effects. In addition, it
also allows to study the implications for wage disparities and economic inequality. For instance,
Acemoglu (2024) uses the task-based framework to study not only aggregate growth but also
distributional implications, namely the extent to which the wages of different demographic and skill
groups are impacted by Al.°

e Another group of studies rely on the properties of aggregate production functions to explore the
potential macroeconomic implications of Al (not shown in Table 1 due to their focus on the
qualitative, theoretical mechanisms rather than on quantifying aggregate effects). For instance,
Aghion, Jones and Jones (2019) focus on the limiting factors to explosive growth through factor
and demand reallocation, such as Baumol’s growth disease. Trammell and Korinek (2023) explore
how Al might affect the various parameters and inputs in an aggregate production function,
including scenarios that could precipitate substantial, even accelerating, economic growth.

In this paper, we take an intermediate approach between the micro and the more macro based studies
and make sectors the key component of our modelling framework. In particular, we study the question of
the aggregate productivity gains of Al in two broad steps (see Figure 2 in the Introduction): first, by
calculating sector-level productivity gains building on the approach by Acemoglu (2024) (Section 2.2
below), then by aggregating these sectoral gains through a multisector general equilibrium model (Section
2.3), building on Bagaee and Farhi (2019).2°

'8 For recent overviews, see for instance Besson et al. (2024); Council of Economic Advisers (2024); Ben-Ishai et al
(2024). Specifically, firm level studies which focus mostly on pre-Generative Al technologies, often in combination with
other digital tools, include Calvino and Fontanelli (2023); Czarnitzki, Fernandez and Rammer (2023); Alderucci et al.
(2020); Damioli, Van Roy and Vertesy (2021). Worker level studies which focus on specific tasks carried out with the
help of more recent language based Generative Al (LLM) tools include Brynjolfsson, Li and Raymond, (2023); Peng
et al (2023); Noy and Zhang (2023); Dell’Acqua et al (2023); Haslberger, Gingrich and Bhatia (2023).

' These models are also useful for modelling pure automation (i.e. technological change that reduces overall labour
demand with a depressing effect on wages). They contrast the automation effect, which is causing labour
displacement, with countervailing forces such as (1) new task creation, which can cause a labour reinstatement effect;
(2) complementary labour demand to rising capital demand — as the productivity of machines improves — and (3) the
positive general equilibrium effects of higher productivity on aggregate demand and hence labour demand.

20 Aldasoro et al (2024) also takes a sectoral approach but they focus on output and inflation while taking aggregate
productivity benefits given.
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Table 1. A comparison of a few recent empirical studies and our paper

Papers
Briggs and
Key assumptions and Kodnani Acemoglu Aghion and .
modelling choices (2023) (2024) pune This paper
g (Goldman (2024)
Sachs)
Micro-level 30%
productivity 27% lab 27-40% lab ductivi
ains / 30% o labour cost -40% labour pro uctivity
co g savings savings cost savings | gains (total cost
from Al* savings)
18.5-68% 12% - 50%
About £ 20% Based on (sector specific;
. out two- Eloundou et al averaging
I. Assumptions Exz) o:;:re thirds of all E/oi?‘ligz:%? al (2024), Gmyrek | approx. 35%)
about Al jobs (2024) ’ et al (2023), Building on
Pizzinelli et al Eloundou et al.,
(2023) (2024)
239 23-80% 23% or 40%
Based on cost Based on BgsedGC) IQT ,
Adoption rate effectiveness Svanberg etal. | Previous S
About 50% . ’ 2024 adoption speed
of Al following ( ),
Svanbera ot al Besiroglu and current
(20294) ’ and Hobbhahn sectoral
(2022) adoption rates
Reallocation
across ggctors Partially* No No Yes
explicitly
modelled?
Cross-sectoral
Il. Mechanisms links explicitly No No No Yes
captured in the modelled?
framework Distributional
istri utlona? No Yes No No
consequences:?
Innovation Not Not Not Not
considered considered considered considered
Notes:

* Based on micro-level studies that identify task-level gains from using LLMs.

**Based on the following assumptions: 7% of all workers are displaced and find new employment; all other workers remain in their current jobs
but become more productive; the structure of the economy (sectoral composition, prices, etc.) does not adjust.

For a more detailed discussion, see the text in Section 2.

Source: Authors’ comparison of the cited studies.

The sectoral general equilibrium approach is useful for our purposes for several reasons. First, it allows to
incorporate the empirical finding that Al benefits a larger share of the tasks performed in some sectors
than in others (what the literature calls exposure to Al). For instance, knowledge intensive services that
rely strongly on cognitive tasks are found to be highly exposed to Generative Al (Eloundou et al, 2024;
Felten et al, 2021; see more in the next subsection). Second, sectoral productivity gains imply higher
sectoral output and, generally, lower prices, which in turn enables expanded production in downstream
sectors through cheaper and more abundant inputs (input-output links). Our multi-sector model allows to
capture the importance of such linkages, which matter for how the economy adjusts to uneven sectoral
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productivity gains. Third, aggregate productivity gains depend not only on sectoral productivity gains but
also on how demand responds to output price changes in different sectors and how it fosters reallocation
of labour and capital across sectors, which our sectoral focus and emphasis on general equilibrium allows
to study. Finally, the sectoral focus also lends itself to account for differences across countries in their
sectoral composition. Going beyond the choice of the quantification and modelling framework, the papers
listed in Table 1 and our approach also vary with regards to assumptions about Al’'s micro level gains, the
exposure of economic activities to Al and the adoption rate of Al, which we discuss in Section 2.2. Specific
modelling choices regarding the impact of Al-driven productivity gains on structural change, in particular
labour reallocation, cross-sectoral links in production, and capital deepening also matter and will be
discussed alongside the model in Section 2.3.

While the framework developed in this paper provides a useful lens to gauge aggregate productivity gains
from Al over a relatively long-run horizon (over 10 years), it relies on several modelling assumptions. First,
within-sector developments, such as permanent or rising productivity differences across firms (shown
empirically by Andrews, Criscuolo and Gal, 2016 and modelled theoretically in Akcigit and Ates, 2021)?",
differences in Al adoption across firms (Calvino and Fontanelli, 2023) or changes in the misallocation of
resources (Restuccia and Rogerson, 2017) due to Al are not modelled. Current evidence is inconclusive
about the role of Al through these mechanisms, some of which pertain to competition issues, explored in
ongoing parallel work (Andre et al., 2024; OECD, 2024a).?? Second, we do not model the implications of
an Al-driven acceleration of innovation, research or technological progress (Aghion, Jones and Jones,
2019; Trammell and Korinek, 2023). This could have large consequences for economic gains in the very
long term. However, given our focus on a 10-year horizon and the lack of quantifiable evidence on this
mechanism, we do not incorporate this potential effect.® Third, we do not explicitly model the production
or the provision of Al, the required investment and its contribution to aggregate growth or the potential
negative effects of factoring in the costs involved when using Al.

We make several additional simplifying assumptions in our modelling approach. First, we model sectoral
output via a stylised production function in which a single factor, representing labour and capital, is
combined with intermediate inputs to produce sectoral (gross) output, and where the productivity
improvements from Al are modelled as an increase in sectoral multi-factor productivity. Hence, we do not
take a stance on whether Al disproportionally raises the productivity of capital or labour, which are both
plausible?*; neither do we explicitly model capital accumulation and the dynamic adjustment through
investments (which also relates to the J-curve hypothesis by Brynjolfsson, Rock and Syverson, 2021).
Instead, we use a simple capital multiplier of 1.5 at the aggregate level to turn TFP growth to labour
productivity growth. Additionally, labour market issues are tackled in a very limited way (restricting mobility
across sectors) but we do not study aggregate employment or distributional consequences, which would

2T Al may exacerbate performance differences across firms, if already more capable incumbents can better exploit its
potential, creating competition issues; or it leads to a disproportionately positive effect on lagging performers. Also, Al
development may be hampered by a lack of competition.

22 Within sector reallocations under Al may be large, given reorganisation and reskilling needs; on the other hand, Al
itself could ease reallocations (through improving labour market matching or capital allocation, for instance).

23 Promising contributions to innovations from Al have emerged in fields such as molecular biology and
pharmaceuticals (protein folding), the design of advanced materials, and solving certain math problems, to name a
few areas. Survey evidence among researchers shows optimism that Al can raise their productivity. See more in
previous OECD work by Filippucci et al. (2024).

24 A consensus on the specific nature of Al-driven technological change has yet to emerge: Al may increase the
productivity of capital, for instance, by making it easier to re-program machines for different tasks. At the same time,
Al promises to raise the productivity of labour, for example, by providing quick access to relevant information or by
automating routine tasks, allowing workers to concentrate on their main activities (see Acemoglu, 2024, for arguments
along this line).
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deserve a separate modelling approach (Acemoglu and Restrepo, 2018).2° Allowing for imperfect
competition and accounting for Al’'s potential impact on competition could limit the aggregate gains from
Al due to lower input-output multipliers, lower supply and higher prices as well as lower adoption. Finally,
this paper does not explore the broader societal risks associated with Al, which may undermine its
economic benefits or hold back the development and adoption of Al in the first place (as touched upon in
Filippucci et al., 2024).

2.2. Deriving sector-level productivity impacts of Al

To determine sector-level productivity gains over the next 10 years
(Sectoral Productivity Growth;.+,10)), We adapt the framework in Acemoglu (2024) to the sectoral
context and consider three key estimates: micro-level performance gains at the worker and task level; the
share of tasks in each sector that is potentially affected by Al (exposure to Al); and the degree of adoption
of Al in the sector. Formally, estimates of the increase in sectoral productivity from Al in a given sector j
are obtained by multiplying average micro-level gains found by studies focusing on specific tasks
(Micro Level Gains) with the share of tasks in industry j that can be performed faster or better with the help
of Al (Exposure;) and the projected adoption rate ten years from now, which may be sector specific
(Adoption Ratejy110):

Sectoral Productivity Growth;; 1,10 1
= Micro Level Gains * Exposure; * Adoption Rate(jys410 ( )

The assumptions and sources about all these components are discussed in the subsections below.

2.2.1. Micro-level performance gains from Al

To estimate aggregate gains from Al, most existing studies use as a starting point the available evidence
on micro level performance gains among workers and firms that use Al. Among the papers shown in Table
1, Briggs and Kodnani (2023) rely on firm-level studies which estimate an average gain of about 2.6%
additional annual growth in workers’ productivity, leading to about a 30% productivity boost over 10 years.
Acemoglu (2024) uses a different approach and start from worker-level performance gains in specific tasks,
restricted to recent Generative Al applications.?® Nevertheless, these imply a similar magnitude, roughly
30% increase in performance, which they assume to materialise over the span of 10 years. However, they
interpret these gains as pertaining only to reducing labour costs, hence when computing aggregate
productivity gains, they downscale the micro gains by the labour share.?” In contrast, we take the micro
studies as measuring increases in total factor productivity since we interpret their documented time savings
to apply to the combined use of labour and capital. For example, we argue that studies showing that coders
complete coding tasks faster with the help of Al are more easily interpretable as an increase in the joint
productivity of labour and capital (computers, office space, etc.) rather than as cost savings achieved only
through the replacement of labour.

25 Regarding distributional consequences, Acemoglu (2024) argues that, unlike previous automation technologies, Al
is unlikely to exacerbate inequality given its applicability in both high- and low-wage occupations. For a discussion of
how the task-based framework is relevant for understanding the various channels of new technologies, such as Al, on
productivity and labour demand, see Acemoglu and Restrepo (2019).

26 Aghion and Bunel (2024) and Bergeaud (2024) take a similar approach.

o Acemoglu (2024) and Aghion and Bunel (2024) downscale worker-level gains by an “Al exposure”-adjusted labour
share of 0.57, resulting in 14.4% total cost savings, while Bergeaud (2024) downscales worker-level gains by labour
share of 0.48, resulting in 16.8% total cost savings.
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To obtain micro-level gains for workers performing specific tasks with the help of Al, this paper relies on
the literature review conducted by Filippucci et al. (2024) (Figure 3). The studies are based on randomised
controlled trials and cover estimates of the performance improvement observed after the adoption of Al in
a range of activities: Al support for customer services (Brynjolfsson, Li and Raymond, 2023) (1st estimate
on Figure 3), the effect of Al coding assistants on software developers (Peng et al., 2023; Cui et al, 2024;
Gambacorta et al, 2024) (2", 6" and 7t" estimates, respectively), and the gains from using Large Language
Models such as ChatGPT in speed and quality of professional writing tasks (Noy and Zhang, 2023) or in
business consulting performances (Dell’Acqua et al., 2023)(3@ and 4" estimates, respectively) and the
performance improvement with Large Language Models assisting with general writing (Haslberger,
Gingrich and Bhatia, 2023) (5" estimate). The point estimates indicate that the effect of Al tools on worker
performance in specific tasks range from 14% (in customer service assistance) to 56% (in coding),
estimated with varying degrees of precision (captured by different sizes of confidence intervals). We will
assume a baseline effect of 30%, which is around the average level of gains in tasks where estimates have
high precision (low confidence bands; for the 1%, 4t and 5" estimates).

Figure 3. Micro-level performance gains from Al for workers in specific tasks

Estimates of the impact of Generative Al from recent micro-level studies
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Note: The figure collects estimates from studies that assess the impact of Generative Al (Large Language Models) in assisting with specific
tasks of workers.

Source: Compilation by Filippucci et al. (2024) (first five estimates); more recent studies by Cui et al. (2024) and Gambacorta et al. (2024) (last
two estimates).

A plausible downside risk to the magnitudes identified from these studies is that they evaluate the effects
in experimental settings, typically among early adopter firms and in contexts that are likely to be most
amenable to Al-assistance.?® When extending to a broader range of tasks, later adopters, and into real life

28 This possibility is only partially accounted for by our strategy of calibrating gains from Al in a specific sector
proportionally to exposure of tasks in a given sector (see Section 2.2.2). Sector-level exposure simply corresponds to
the share of tasks exposed to Al, where tasks are categorised as exposed vs. non exposed in a binary way, without
accounting for possible lower or higher impact on different tasks.
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settings, the effects may turn out to be smaller (Acemoglu, 2024). Moreover, these studies may not fully
take into account that the use of Al entails costs which need to be factored in to arrive at the true
productivity gains.

On the other hand, an upside risk that could arise over the longer run is the emergence of new types of
economic activities that better integrate Al or the entry of new firms that bring novel business models and
make the collection of data — a key ingredient of Al — fully embedded in their operations. This corresponds
to what Agrawal, Gans and Goldfarb (2022) call system-wide adoption, which in the case of earlier GPTs
took time to appear but brought stronger economic benefits, as opposed to “plug-and-play” or point-solution
based adoption, which simply replaces a given task with the new technology.?® In the task-based
framework of Acemoglu and Restrepo (2018), this upside risk would be akin to the arrival of new tasks or
occupations enabled by Al in which humans can be productively employed. This would also be in line with
the historical experience of the appearance of new occupations over several decades building on previous
technologies (Autor et al, 2024).

Finally, our strategy aims at studying the possible future impact of current Al capabilities, considering also
a few additional capabilities that can be integrated into our framework by relying on existing estimates (Al
integration with additional software based on Eloundou et al, 2024; integration with robotics technologies).
In addition, it is clearly possible that new types of Al architectures will eliminate some of the current
important shortcomings of Generative Al — inaccuracies or invented responses, “hallucinations” — or
improve further on the capabilities, perhaps in combination with other existing or emerging technologies,
enabling larger gains (or more spread-out gains outside these knowledge intensive services tasks; see
next subsection). However, it is still too early to assess whether and to what extent these emerging real
world applications can be expected.®°

2.2.2. The exposure of different sectors to Al

The degree to which Al can potentially affect a specific occupation or sector is called exposure to Al in the
literature (Felten et al, 2021; Eloundou et al, 2024). It is derived from the type of tasks that humans carry
out and the extent to which Al is capable of doing those tasks or helping with them.?' High exposure of a
sector (or occupation) means that it consists of a large share of tasks that Al can assist with.3? This concept
allows to extend micro-level (task-level) performance gains to more aggregate, sector or macro-level
productivity effects.

2% One example from previous technologies relates to the optimal exploitation of electric power, which emerged with
the reorganisation of factories. This reorganisation maximised the benefits of accessing energy over a broader area,
in contrast to the concentrated energy sources used previously, such as steam engines.

30 For instance, Google’s DeepMind lab has published preliminary findings about combining machine learning based
methods with logical or symbolic architectures to improve math problem solving performance (Google, 2024). Symbolic
architectures rely on a set of internally consistent rules instead of learning from observed patterns as is done in
machine learning and were the leading paradigm at the early days of Al in the 1950s, before machine learning took
off (OECD, 2019b).

31 The distinction of whether Al is a complement or substitute to humans in specific tasks is not directly modelled in
our framework. In both cases, fewer workers are required to produce a given amount of output, hence productivity is
increased. However, distributional consequences, which are outside of the scope of this paper, may differ. We also do
not model quality improvements in goods or services, which may arise if human capacities are augmented by Al, as
discussed by Trammel and Korinek (2023).

32 Other sources include the World Economic Forum and Accenture which is similar in spirit to Felten et al (2021) but
differentiates between lower exposure values which are considered as complements from higher values which are
considered substitutes (WEF, 2023). Cazzaniga et al (2024) also differentiate exposure based on the complementary
nature to humans, driven not only by technological factors but social acceptability.
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Briggs and Kodnani (2023) from Goldman Sachs assume that around one third of total tasks (hence about
one-third of jobs) will be exposed to Al. Acemoglu (2024) assumes 20% of US labour tasks are exposed
to Al, based on aggregating task-level exposure measures from Eloundou et al. (2024).3® Aghion and
Bunel (2024) considers a broad range from several studies, including Gmyrek et al (2023), at 18.5% and
substantially higher figures from Pizzinelli et al (2023), at 60%.34

We follow Acemoglu (2024) and rely on the recently published work by Eloundou et al. (2024), who
evaluate which tasks can be performed faster with the help of Al, using both human evaluators and an Al
tool (OpenAl's GPT) itself as an evaluator.®® In line with the authors’ assessment, we use the results
obtained by human evaluators. We consider two measures from the study: first, the share of tasks for
which the required time for completion substantially decreases using Generative Al (LLMs) (baseline
exposure); second, an alternative measure that includes tasks where gains are achievable if other software
is developed on top of current LLMs (expanded capabilities). The inclusion of this more optimistic and
forward-looking case among our scenarios is motivated by the fact that some of the capabilities of LLMs
considered by Eloundou et al. (2024) have already improved substantially. 3¢

We map task-level Al exposure to sectoral exposure, based on the task composition of different sectors,
described in detail in Annex 4.1. This reveals that the most exposed sectors are knowledge-intensive
services that rely strongly on cognitive tasks, such as Finance, ICT services (including telecoms),
Publishing and Media, and Professional services (Figure 4). The least exposed sectors include sectors
with a strong manual component, such as Agriculture, Mining and Construction. This pattern confirms
earlier results on sectoral exposure to non-Generative Al (Felten et al., 2021 and Annex Figure A1),
suggesting that Generative Al and LLMs will further expand the effects of previous non-Generative Al.%’
Note that the more optimistic scenario with expanded Al abilities shows substantially higher exposure for
each sector, while the ranking of sectors is largely preserved.

33 Acemoglu (2024) uses an indicator of Eloundou et al (2024) that captures mostly those subtasks with a high potential
for automation by LLMs as opposed to augmentation. This leads to lower average exposure (around 20%) than implied
by the overall, baseline exposure measure in Eloundou et al (2024), which is also used in our calculations (around
35%).

34 While the concept of exposure at the task level may suggest that tasks are equally important, in practice more
important tasks — called “core tasks” — receive a large weight when computing occupational and sector level exposure
(Annex 4.1).

35 In the case of humans, they use enlisted experienced annotators that previously worked on ChatGPT'’s development
(Ouyang et al, 2022). ChatGPT and human estimates are very close in magnitude and consistent in terms of sectoral
variation.

36 For instance, the length of the interactions allowed in the LLM is now substantially larger than what was available
at the time of the study of Eloundou et al (2024).

37 To the extent that Generative Al can help with activities that have a strong physical element through providing advice
or guidance with decisions about how to carry out those tasks (e.g. a plumbing or a farming activitiy) these low
exposure figures in highly manual task intensive tasks can be seen conservative.
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Figure 4. Sectoral Al exposure: the share of tasks that are affected by Al

Based on current Al capabilities (baseline) and expanded Al capabilities
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Notes: The graph reports the baseline measure of sectoral exposure to Al gains (labelled as beta in the source study Eloundou et al., 2024) and
an alternative measure that includes among the exposed tasks also the ones where performance gains are achievable if additional software is
developed on top of current LLMs (labelled as gamma in Eloundou et al., 2024). Calculations are based on the US task-occupation-sectoral
structure.

Source: Authors’ calculations.

Finally, we consider the case where Al is combined with or integrated into robotics technologies (using
sensors, fine motor skills, etc.) to carry out a range of physical tasks as well. The most advanced, or
futuristic, among such solutions seem to be in early stage and probably far from cost effectively scalable®
but there are already some current applications that leverage this possibility, including by relying on
previous, non-Generative Al (drones, autonomous vehicles, automated assembly lines). This can be
thought of as an important upside risk to exposure, and to quantify this we calculate another cross-sectoral
exposure measure by computing an exposure to robotics technologies (based on the manual intensity of
tasks and occupations within sectors) and adding that to the exposure to Generative Al.3® More specifically,
we combine an established definition of routine manual tasks (Acemoglu and Autor, 2011) with estimates
of the intensity of manual tasks at the occupation level (Autor and Dorn, 2013) to define exposure to
industrial robots (similarly to De Vries et al., 2020).4C The resulting manual task intensive sectors —
including agriculture and large parts of manufacturing — are highly exposed to robotics technologies (up to
60-80%, Figure 5). By contrast, exposure is weak (10-20%) in sectors intensive in cognitive task — such
as knowledge intensive services — where Generative Al plays a stronger role. The joint exposure to Al and

38 See the recent case of an OpenAl powered autonomous humanoid robot which will work on a car manufacturing
assembly line (Forbes Magazine, 2024).

39 |n sectors where the sum of the two different types of exposures exceeds one, we cap the combined measure — Al
integrated with robotics technologies — at 1.

40 I particular, an occupation is defined as “Manual intensive” if the share of manual tasks fall into the top tercile
across all occupations. This threshold is somewhat arbitrary and making it less stringent could increase the share of
manual intensive tasks. However, that would not affect our total exposure since the sum of robot and GenAl exposure
reaches 100% already for most sectors. On the other hand, by using a more narrow set of manual tasks as our
definition could yield a lower exposure to robots. In this sense, the values can be seen as an upper bound.
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robotics — obtained as the sum of the two exposure measures — will be used in one of our scenarios
denoted “Al integrated with robotics technologies”.

Figure 5. Sectoral exposure to Generative Al and robotics technologies
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Note: *GenAl denotes the exposure measure based on Eloundou et al. (2024), expanded capabilities (as shown in Figure 4, “Exposure with
additional software”; see details there). Robot exposure is obtained by the share of occupations in sectors that are in the upper tercile in terms
of routine-manual task intensity, combining Acemoglu and Autor (2011), Autor and Dorn (2013) and following De Vries et al. (2020). Calculations
are based on the US task-occupation-sectoral structure.
Source: Author’s calculations.
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2.2.3. Al adoption: following the path of previous GPTs?

When evaluating the technology’s impact over a relatively long horizon, we need to make assumptions
about its diffusion in the economy — the degree to which it is used or adopted among firms and workers.
The assumptions of the literature shown in Table 1 range between 23% and about 50% of Al adoption 10
years from now, using various justifications.

Consistent with the literature, we focus on a 10-year horizon. To choose realistic Al adoption rates over
our horizon, we consider the speed at which previous major GPTs (electricity, personal computers,
internet) were adopted by firms. Based on the historical evidence, we consider two possible adoption rates
over the next decade: 23% and 40% (Figure 6). The lower adoption scenario is in line with the adoption
path of electricity and with assumptions used in the previous literature about the degree of cost-effective
adoption of a specific Al technology — computer vision or image recognition —in 10 years (Svanberg et al.,
2024; also adopted by Acemoglu, 2024). The higher adoption scenario is in line with the adoption path of
digital technologies in the workplace such as computers and internet. It is also compatible with a more
optimistic adoption scenario based on a faster improvement in the cost-effectiveness of computer vision in
the paper by Svanberg et al. (2024).
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Figure 6. Mapping Al's future adoption path with that of previous General Purpose Technologies

Share of firms using the technology, in the United States
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Note: The 2024 value for Al is the expectation (exp.) as reported by firms in the US Census Bureau survey.

*We consider for the introduction of the user-friendly breakthrough variant of the technology the following: for electricity, development of electric
motor; for PC, introduction of IBM PC; for Al, launch of ChatGPT. For more details, see the sources.

Source: For PC and electricity, Briggs and Kodnani (2023); for Al, United States Census Bureau, Business Trends and Outlook Survey.

On the one hand, the assumption of a 40% adoption rate in 10 years can still be seen as somewhat
conservative, since Al might have a quicker adoption rate than previous digital technologies, due its user-
friendly nature. For example, when looking at the speed of another, also relatively user-friendly technology,
the internet, its adoption by households after 10 years surpassed 50% (Figure A2 in the Annex). On the
other hand, a systemic adoption of Al in the core business functions — instead of using it only in isolated,
specific tasks — would still require substantial complementary investments by firms in a range of intangible
assets, including data, managerial practices, and organisation (Agrawal, A., J. Gans and A. Goldfarb,
2022). These investments are costly and involve a learning-by-doing, experimental phase, which may slow
down or limit adoption. Moreover, while declining production costs were a key driver of rising adoption for
past technologies, there are indications that current Al services are already provided at discount prices to
capture market shares, which might not be sustainable for long (see Andre et al, 2024). Finally, the
pessimistic scenario might also be relevant in the case where limited reliability of Al or lack of social
acceptability prevents Al adoption for specific occupations. To reflect this uncertainty, our main scenarios
explore the implications of assuming either a relatively low 23% or a higher 40% future adoption rate.*’

41 Measuring current adoption rates of Al is also not straightforward. For instance, the survey of the Census Bureau
asks a more specific, more narrow question about Al (was it used in core production in the last 2 weeks) which could
drive the lower adoption rates obtained among US firms (around 5%) than in the EU and UK (around 10-15%) whose
statistical agencies ask about Al use more generally. Differences across surveys could also reflect differences in the
choice of definition about what counts as Al (Generative Al or other types of Al). Even so, within the EU, two different
surveys about the same Al subfield — Natural Language Processing — yield about 5-fold differences, as documented
by Hoffmann and Nurski (2021). Calvino and Fontanelli (2023) presents evidence from 11 OECD countries based on
harmonised statistical code in the context of the Al diffuse project. Bick, Blandin and Deming (2024) presents much
higher adoption rates among individuals than the official statistics, which discrepancy can be explained by the latter
assessing systemic, regular use in business functions. To harmonise across countries, in Section 3.4 when we extend
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The discussion up to now (captured in Figure 6) illustrates our assessment of economy-wide adoption
rates of Al over the next 10 years. However, adoption rates will likely differ across sectors. In fact, current
adoption rates already differ starkly across various activities, possibly reflecting a different degree of
applicability and potential gains (Figure 7). Indeed, a comparison with Figure 4 on sectoral exposure rates
confirms a close relationship with adoption, with knowledge intensive services (ICT and professional
services in particular) showing very high exposure and adoption rates, while physical task intensive
activities rank low on both measures. This positive association will motivate one of our main scenarios in
which we consider the possibility that sectoral productivity gains from Al are very unevenly distributed and
concentrated in knowledge intensive services with both high exposure and adoption.

Figure 7. Current differences in adoption rates of Al across sectors are large

Al adoption rates among firms by sector, in the United States

20%

18%

16%

14%

12%

10%

8%

6%

a%
|||||||IIIII III IIIIII
Y P . .

Note: The graph reports the share of firms by sector that report a regular use of Al technologies. US data are matched to ISIC industries based
correspondence tables based on employment weights.

Source: US Census Business Trends and Outlook Survey (BTOS), average across waves between June and August 2024; for agriculture, a
previous (December 2023) wave was used and increased by the average rise in adoption (33%) until mid-2024.

2.2.4. The resulting sector-level productivity gains

Al driven sectoral productivity gains are obtained by multiplying micro level gains with exposure and
adoption (using equation 1) and are reported as the overall percentage increase in productivity over a 10-
year horizon (Figure 6). They range between 1% for highly manual intensive activities (agriculture, fishing,
mining) to nearly 4% in knowledge intensive services in the “Low adoption” case (23%). Differences across

adoption rate predictions to other countries beyond the US, we rely on preliminary results from an international survey
among firms conducted by the OECD Global Forum on Productivity (OECD, 2024b).
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sectors reflect heterogeneity in the baseline sectoral exposure measure, while the overall low gains reflect

the low level of adoption in this scenario.

Allowing for “High adoption (40%) and expanded capabilities” (i.e. including tasks that can be performed
by Al if using additional software) raises the gains but changes the ranking of exposed sectors only slightly.
The implied sector-level gains in the lowest exposed sectors and the highest exposed ones vary gradually
with the ranking of the sectors, ranging from slightly above 2% to almost 10% over ten years in the high
adoption and expanded capabilities scenarios (Figure 8).

Figure 8. Implied sectoral total factor productivity gains from Al over a 10-year horizon
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Note: The bars show the sector-by-sector value added based total factor productivity gains implied by equation 1 under various assumptions for
adoption, capabilities (exposure) and micro-level gains. Low adoption assumes 23%, high adoption assumes 40% of firms adopt Al. Expanded
capabilities refer to higher exposure which takes into account future potential Al capabilities when complementary digital tools become available.
Uneven gains aim to get closer to the much higher dispersion and skewness observed in the data. See more details in sections 2.2.1-2.2.3.
Source: Authors’ calculations.

These patterns imply Al productivity effects that vary only by a few percentage points across sectors. By
contrast, the disparity of actual sectoral TFP growth observed during the period of the ICT boom in the US
(1995-2005) is much more extreme, reaching several-fold (nearly 600%) growth in the most impacted
sector (computer manufacturing) (Figure A3 in the Annex).*? Such high TFP growth disparities, which are
also observed in other countries over the same period — although to a less extreme degree; see the UK
in the same figure in Annex — are suggestive of large and concentrated long-term gains of ICT in a few
sectors. These sectoral productivity gains are much more uneven than what is implied by current cross-
sectional variation coming from Al exposure measures (as we do in equation 1 used in our main scenarios).

42 The large contribution of ICT producing sectors (e.g. computer manufacturing) to the ICT driven productivity boom
starting in the mid-90s is analysed in Fernald (2015) and Gordon and Sayed (2020).
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To better reflect the large historically observed dispersion in sectoral productivity gains as well as current,
highly uneven adoption rates of Al across sectors, we also introduce a third case (also shown on Figure
8): “High adoption, expanded capabilities and uneven gains”. In this case, we assume that the relative
adoption rates across sectors in 10 years will be the same as today (section 2.2.3; Figure 7), while we
ensure that the average level of sectoral productivity gains is the same as in the scenarios with more even
sectoral gains.*® By keeping the (value added share weighted) average gain fixed and by only increasing
the variation across sectors, we can isolate the role of sectoral productivity dispersion.** This case leads
to productivity gains in the most impacted sectors — knowledge intensive services — that amount to around
10-20% over 10 years.

2.3. A simple multi-sector general equilibrium model with input-output linkages

To predict how sectoral productivity gains translate into aggregate productivity growth, we need to
understand how the structure of the economy changes in the wake of the sectoral productivity shocks. We
will focus on changes in the sectoral allocation of factors, changes in input-output linkages between
sectors, and changes in the relative sectoral output prices; under various assumptions regarding demand
responses and factor reallocation.

Since we want to account for the role of cross-sectoral input-output linkages in our analysis, we turn our
estimates of value-added based sectoral productivity gains into corresponding estimates of gross-output
based productivity gains. The difference between value-added based productivity growth
Sectoral Productivity Growth/f; ., o (defined in equation 1) and gross-output based productivity growth
Sectoral Productivity Growth[{ ., ,in a given sector reflects the sector’s reliance on intermediate

inputs:4°

Sectoral Productivity Growthfﬂ’tﬂo] (2)
= Sectoral Productivity Growth}fé'tﬂo] X (1 — Intermediate Input Share; ;)

43 This is still far from what was observed in the data during the ICT boom (several-fold increases), which motivates
our more extreme case for sectoral growth dispersion in one of the alternative scenarios, to be discussed among the
results in Section 3.2.

44 Uneven sectoral gains could also be motivated by assuming micro-level gains that vary by different tasks and
sectors: ICT activities are dominated by programming where Al is delivering larger performance benefits (more than
50%), while customer services are less impacted (at 14%). However, an exact matching of Al types to sectors is
complicated by the fact that the current micro-level studies cover only a subset of tasks where Al might be used.

45 Downscaling the expected productivity gains when moving to a gross output based definition of productivity is
consistent with the notion that Al may lead to a smaller proportional increase in gross output when intermediate inputs
play a more important role in the production process. For instance, one may expect that integrating Al in car
manufacturing can improve the efficiency with which workers and assembly line machinery (i.e. labour and capital)
assemble components (intermediate inputs) but that Al does not allow to assemble more cars from the same amount
of components. On the other hand, one can also think of examples where Al does improve the efficiency of intermediate
inputs, for example by improving their sourcing and timing which allows for just-in-time manufacturing, or by improving
quality control which results in fewer defective parts and reduced waste. To the extent that Al improves the productivity
of not only capital and labour but also intermediate inputs, our estimates of Al-induced productivity gains could be
considered conservative.
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2.3.1. The model structure

Our model corresponds to the multisector general equilibrium model in Bagaee and Farhi (2019), which
features input-output links and which we calibrate to match OECD input-output tables. The specifics of the
model are as follows. In each sector, i, gross output is produced by combining a single factor L;
(representing both labour and capital)*® and a composite of intermediate inputs X, according to

6
-1 E)m (3)

yVi = Ai (a)iLie + (1 - (A)i) Xi o

where A; denotes the level of gross-output based total factor productivity in sector i, and 6 is the elasticity
of substitution between factors and intermediate inputs.*” The composite intermediate good is in turn given
by

&

R N -1\ T (4)
Xi = Z%’j X )
=1

where x;; is output from (upstream) sector j used by (downstream) sector i as intermediate input, y;; are
weight parameters over upstream sectors that add up to one, Z?’: vij =1, and ¢ is the elasticity of

substitution across intermediates.

Final demand Y is represented by a constant elasticity of substitution (CES) aggregator over sectoral final
consumption ¢; (obtained as the difference between sectoral total output y; and total use by other sectors

as intermediates Y.)_, x;;):
g
N 0-1\o—1
(3
( T ) (5)

where ¥V, a; = 1 and ¢ is the elasticity of substitution across final consumption outputs.

The model requires specifying three distinct structural elasticities: the elasticity of substitution in
consumption, g, the elasticity of substitution between factors (labour and capital) and intermediate inputs
in production, 8, and the elasticity of substitution between different intermediate inputs, €. We choose these
parameters based on relevant estimates from the literature. We then calibrate the share parameters w;, a;

46 An important question is whether output can be produced with higher capital intensity following the introduction of
Al. This depends on whether the technology is labour or capital augmenting. Given current Al capabilities and its early
use, it is very difficult to determine to what extent Al augments or substitutes human capabilities, as Autor et al (2024)
also stresses in their concluding remarks and in line with conclusions in OECD (2023c). In addition, which of the two
effects dominate also crucially depends on policy choices about Al's development and use (Acemoglu, Autor and
Johnson, 2023). A related important question is whether productivity gains in a given profession or sector will lead to
employment growth or shrinkage. In equilibrium, this depends on the demand for the output of that activity and the
labour required to satisfy that demand. Our model captures these two opposing forces by modelling increased demand
when prices decline following the rise in productivity, as well as the reduced labour requirement to produce a given
output following the rise in productivity.

47 An alternative modelling strategy is to have A; represent value-added based productivity that augments factors but
not intermediates, i.e. having A; multiply L;. The two approaches imply quantitatively similar results for the aggregate
productivity gains from Al.
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and,y;; to match observed sectoral factor shares, expenditure shares as well as the economy-wide input-
output table, respectively.

Solving the model implies finding equilibrium prices and quantities and determining the implied sectoral
allocation of intermediate inputs and factors at given sectoral productivity levels. The difference in
aggregate real output between the pre- and post Al equilibria yields our model-based prediction for the
aggregate TFP gains from Al. We then decompose the growth rate in aggregate TFP as follows:

ATFP o4 DA ae DA
—p = ; sh; A ;(Aio ) A + BaumolEf fect (6)
L L

Direct ef fect Role of I-0 links (I-0 multiplier)

where s};* is the initial nominal value added share of sector i and 4;, is the initial Domar weight - defined

as sector i 's nominal gross output over GDP (%).48 Capital accumulation is not modelled explicitly, so
ofo

to obtain labour productivity effects from TFP effects, we apply a multiplier of 1.5 consistent with standard

growth models with a Cobb Douglas production function and a capital and labour share of 1/3 and 2/3,

respectively.*®

The direct effect is the sum of the sectoral productivity gains with each sector weighted by its value-added
share. The I-O multiplier is constructed by first computing the sum of the sectoral productivity gains with
each sector weighted by its gross sales over GDP (i.e., its Domar weight) and then subtracting the direct
effect. The input-output multiplier arises as one sector’s productivity gains also helps to expand the
productive capacity of other sectors by lowering the input prices that they face. Finally, the Baumol effect
—which captures the role of structural change — is derived by subtracting the sum of the direct and indirect
effects from the overall macroeconomic effect. In this we follow Bagaee and Farhi (2019) who interpret
Baumol’s growth disease as the discrepancy between within-sector productivity growth, aggregated at
fixed nominal output shares and actual aggregate productivity growth.

In Annex 1, we use a simplified model without input-output linkages to derive two key insights that also
apply to our main model. The first insight is that aggregate productivity gains are diminished if productivity
growth differs starkly across sectors. The second insight is that differential growth rates slow down
aggregate productivity growth more if demand is relatively inelastic (goods are strong complements), and
if factors of production cannot easily be reallocated towards sectors where they are most needed. These
mechanisms will be illustrated by the model predictions discussed under various scenarios (Section 3.1-
3.2).

2.3.2. Assumptions on structural elasticities and calibration to the input-output tables

On the production side, we assume that the elasticity of substitution between factors and intermediate
inputs is 0.5, following Atalay (2017) and Bagaee and Farhi (2019). Further, we assume that the elasticity
of substitution between intermediate inputs is 0.0008. This low value is justified by the relatively strict

48 We abstract from modelling changes in the aggregate employment rate (or unemployment) which can be motivated
by our long (10-year) long horizon focus.

9 multiplier of 1.5 is consistent with the historical ratio of labour productivity growth to TFP growth over the past five
decades in the US (Bergeaud, Cette and Lecat, 2016). This is similar to Acemoglu (2024) who also focuses on TFP
and obtains labour productivity effects by applying a simple multiplier capturing capital deepening based on recent
capital share data from the US, resulting in a somewhat higher multiplier of 1.75. Modelling capital explicitly would
allow to separately study the cross-sectoral reallocation of labour and capital, which would allow for an additional
margin of adjustment across sectors even if labour allocation is assumed to be limited, thereby reducing the drag from
the Baumol effect.
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technical requirements that are needed to produce a given good or service and is in the neighbourhood of
what Bagaee and Farhi (2019) use.*®

Finally, for the elasticity of substitution in consumption, we consider different scenarios (summarised in
Table 2 in the next section). In our baseline scenario, we assume an elasticity of 0.72 so that the final
goods produced in different sectors are gross complements (i.e. the relative demand for the goods and
service produced across different sectors reacts less than one-to-one to changes in relative sectoral output
prices).®' As an alternative scenario, we consider the possibility that demand is extremely inelastic so that
even a steep drop in prices would only lead to a small increase in demand. In our context of Al-driven
productivity shocks, we interpret this case as a demand rigidity in the face of Al, or simply low additional
demand for Al-powered goods and services. To study this possibility, we set the elasticity to a very low
level of 0.01.

Given these assumptions on structural microeconomic elasticities, we calibrate all the weight parameters
in the model to match observed sectoral factor shares, value-added shares, as well as empirical input-
output tables which we visualise in Figure 9 for the United States. The figure highlights the important role
of a number of knowledge intensive services (finance, ICT services and professional services) as inputs
to the production in many other activities. This is significant since it is exactly these sectors that are highly
exposed to Al (Figure 4 on exposure), implying substantial spillover gains to their downstream sectors
(Calligaris et al, 2023; Acemoglu, Akcigit and Kerr, 2023).52

An important question is how sectoral productivity gains translate to macro level gains depending on
whether factors of production (labour and capital) can easily be reallocated across sectors. To highlight
the role of factor mobility, we consider the extreme cases: one where factors are perfectly mobile and can
be reallocated across sectors at no cost, and one where each sector can only use the factors available
prior to the Al-driven productivity gains. In the second case, all the adjustments must occur through
changes in the input-output structure of the economy as well as through changes in relative prices.%

50 They use 0.001 which we downscale by 20% given our more aggregate sectoral structure available in cross-country
10 tables — 40 sectors — compared to what Bagaee and Farhi (2019) use — more than 80 sectors. The idea is that the
production structure of intermediates is even more restricted (implying even lower elasticities of substitution) when a
more course aggregation is considered. However, keeping the original value barely changes the model predictions.

51 Again, for similar arguments related to a courser sectoral structure, we use a 20% lower figure than in Bagaee and
Farhi (2019).

52 We use the latest available data from 2019 for the calibration exercise. This could downplay the importance of the
ICT sector, given the COVID-19 pandemic related surge in digital technology use — hence potentially lower the Al
driven productivity boost to the extent its benefits are transmitted across the economy through ICT.

53 Extending our 10-year horizon to longer periods would be compatible with higher elasticities on the production side
and greater factor mobility, as there is more room for the economy to adjust. Currently, we do not model partial factor
mobility or differentiation between types of factors (labour and capital). These extensions would result in scenarios
that fall between the two extremes of full factor mobility and restricted mobility. This is true for the case of allowing
capital to move more freely than labour: it would provide an additional adjustment channel for the economy compared
to the fully restricted capital mobility case and would also yield a scenario in between the two extreme cases.
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Figure 9. lllustrating input-output linkage intensities across detailed sectors

The case of the US (2019)
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Note: Each cell of this heatmap shows the share of the row sector’s intermediate inputs that are sourced from the given column sector. By
construction, the values in each row sum to 1. As an example, sector Coke/petrol. (¢19 in the ISIC Rev 4 classification system “Manufacture of
coke, and refined petroleum products”) sources the vast majority of its intermediate inputs from sector Energy minerals (b05, “Mining and
quarrying, energy producing products”). Similarly, many sectors source a significant share of their intermediate inputs from sector Prof./tech.
(m, “Professional, scientific and technical activities”). Note that beyond the composition of intermediate inputs, sectors also differ in their overall
intermediate input use intensity which is not shown in this chart. Public administration is (ISIC Rev4. O) is omitted, following Bagaee and Farhi
(2019), and given that public sector issues are outside the scope of our analysis.

Source: OECD Input-Output tables, United States.

3. Model estimates of Al's impacts on aggregate productivity

3.1. Main scenarios

Table 2 summarises our main scenarios and the underlying assumptions, which reflect various
combinations of the model ingredients (parameters), estimates from the literature (on exposure and micro-
level gains) and experience with previous GPTs (on adoption), as discussed in Section 2. We annualise
the 10-year overall TFP gains predicted by the model to derive annualised growth rates, which for ease of
exposition we interpret as additional percentage point boosts to aggregate TFP, relative to a baseline

MIRACLE OR MYTH? ASSESSING THE MACROECONOMIC PRODUCTIVITY GAINS FROM ARTIFICIAL INTELLIGENCE © OECD 2024

Restricted Use - A usage restreint



aggregate TFP growth.5*

|29

The next subsection will present a few additional scenarios that isolate further
the role of certain structural features and illustrate the effect of more extreme assumptions (see Table 3).

Table 2. Main scenarios and underlying assumptions

1 Low 2. High adoption 3. Scenario 2 with
Scenarios Lo and expanded adjustment frictions and
adoption e ;
capabilities uneven gains across sectors
Assumptions
'Iz\/llmro-level gains from 30% 30% 30%
Eloundou et al. Elougggi etal
Exposure to Al (2024), ( d zj’AI Asin 2.
baseline expanaec
capabilities
Uneven across sectors following
current adoption rate
Al adoption 23% 40% differences, while keeping the
cross-sectoral average gain
unaffected

Factor allocation Mobile / Mobile / Restricted
across sectors fully flexible fully flexible
Demand Standard Standard Inelastic
Results for
aggregate annual
TFP growth (in p.p.)
Direct effect 0.14 0.37 0.38
Input-output multiplier 0.09 0.25 0.24
Baumol effect 0.00 0.00 -0.08

Total effect 0.24 0.62 0.53
Results for annual
labour productivity
growth (in p.p.)*

Total effect 0.36 0.93 0.8

Note: See more details in the text. Assumptions for the elasticity of substitution across intermediate inputs and between intermediates and
factors remain the same across the three scenarios and are described in subsection 2.3.1. The numbers are rounded to the nearest 2-digit
decimal.

* The labour productivity growth effects are calculated by assuming a standard multiplier of 1.5 to account for capital accumulation (see Section
2.3.1).

Source: Authors’ calculations.

Figure 10 shows the estimated effects of Al on aggregate TFP for our main scenarios, reported as
annualised growth over a 10-year horizon. The results in Figure 10 come from a calibration of the model
to the US economy. In the first scenario with “Low adoption” (at 23%), we project Al to generate a 0.24
percentage points boost to annual TFP growth over the next 10 years. The direct effect of productivity
increases at the sectoral level accounts for slightly more than 0.14 percentage points of annual growth.
This direct effect is compounded by an input-output multiplier effect as productivity gains in one sector
benefit the other sectors through reduced costs of intermediate inputs. Our estimates of the
macroeconomic productivity gains from Al are somewhat larger than what Acemoglu (2024) has found,
owing primarily to the fact that we use a more comprehensive measure of exposure from Eloundou et al.

54 Note that given the low growth rates involved in the calculations, a percent increase can also be interpreted as a
percentage point boost because the two are nearly identical.
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(2024) and that we interpret the documented microeconomic gains as total cost savings rather than only
labour cost saving. Compared to Briggs and Kodnani (2023) who project around 1pp annual TFP growth
increase®®, our estimates are significantly smaller both due to lower adoption and lower exposure
assumptions (see Table 1). For a more extended comparison of our estimates with those in the literature
— in terms of the labour productivity effects — see Figure A.10 in Annex A.

Figure 10. Main results on long-run aggregate TFP gains from Al

Annualised productivity growth impacts over 10-years (in percentage points, calibrated for the US)
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Source: Author’s calculations.

In the second scenario with “High adoption and expanded capabilities”, we consider the possibility of higher
adoption rates (40%) and expanded Al capabilities (i.e. more tasks exposed to Al). In this case, the direct
effect of sectoral productivity gains alone implies 0.37 percentage points of annual TFP growth over the
next 10 years. Accounting for spillovers along input-output linkages increases the annual TFP gains to
about 0.61 percent. Hence assuming higher adoption and exposure results in larger differences from
Acemoglu’s (2024) main estimate but still substantially lower than Briggs and Kodnani (2023).

In the third scenario, which adds “adjustment frictions and uneven gains across sectors”, we consider
various impediments that could limit the extent to which sectoral productivity gains translate into
macroeconomic productivity growth. First, we consider the possibility that sectoral productivity gains are
more unevenly distributed (see Figure 8 and the discussion in Section 2.2).5¢ Further, we restrict the
sectoral reallocation of labour and capital, but assume that firms continue to be able to freely adjust their
use of intermediate inputs. Finally, we also introduce the possibility that demand for products and services
from Al-powered sectors is limited (see for details Subsection 2.3.1). With these adjustment frictions in

%5 Implied when applying a standard capital multiplier of 1.5 in an inverse manner, to their baseline 1.5pp annual labour
productivity growth effect.

% |n the scenario with uneven sectoral gains, we keep the value-added share weighted mean of sectoral productivity
gains fixed so that the direct effect of Al (the blue bar) remains constant.
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place, and under uneven sectoral gains, our model predicts that aggregate productivity growth drops by
about one-sixth relative to the frictionless benchmark due to Baumol’s growth disease.

Interestingly, the Baumol effect arises only in the third scenario. This is the case because the assumed
productivity gains in the first two scenarios are relatively evenly distributed across sectors (see Figure 4).
In addition, these scenarios also assume a frictionless economy in which factors and intermediate inputs
can be freely reallocated to sustain production in less-Al exposed sectors, and where demand is relatively
elastic with consumers willing to substitute the consumption of goods and services produced in less Al
exposed sectors with the consumption of output from sectors that experience strong productivity gains.

During previous GPT waves, in particular during the ICT boom episode, highly uneven productivity
performance resulted in a substantial drag on aggregate productivity growth (Box 1). Over the very long
term, spanning multiple technological waves across several decades, a similar phenomenon has been
observed as productivity growth in manufacturing outpaced productivity growth in services, and the
associated Baumol effect implied a persistent moderate drag, on the order of 0.3-0.5 percentage points
per year.%” With Al, the performance boost in some knowledge intensive services may significantly outpace
others, which may yield a similar disparity of performance improvements across sectors and act as a drag
on aggregate growth. As Aghion, Jones and Jones (2019) put it when assessing the potential of Al to
significantly accelerate growth: “Economic growth may be constrained not by what we do well but rather
by what is essential and yet hard to improve”. Our analysis aligns with this view, suggesting that for Al to
generate larger and more sustained productivity gains in the long run, Al would need to improve
productivity across a wide range of activities.5®

Figure 11 presents auxiliary scenarios that shed light on the relative importance of uneven sectoral gains,
inelastic demand, and reallocation frictions in producing the Baumol effect. The figure shows that a large
Baumol effect appears only when we assume inelastic demand and significant frictions on top of uneven
sectoral gains. The reason is that in the absence of reallocation frictions, the economy can better
accommodate uneven sectoral productivity growth by redeploying capital, labour, and intermediate inputs
to increase output also in the sectors of the economy that did not benefit from strong productivity gains yet
produce goods and services that consumers value (non-Al exposed activities).

57 Nordhaus (2008) cites a 0.5pp per year drag over 1950-2000, and Baqaee and Farhi (2019) mention a cumulative
19pp over 70 years (approximately 0.3 pp pear year).

58 Al may accelerate the rate of growth through raising the productivity of research and innovation itself, which our
framework does not allow to investigate.
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Figure 11. The role of different assumptions about sectoral gains, demand, and reallocation
frictions

Annualised productivity growth impacts over 10-years (in percentage points, calibrated for the US)
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Source: Authors' calculations.

Box 1. How factor reallocation and changes in relative output prices affect aggregate
productivity growth: exploring the drivers of Baumol’s growth disease

As some sectors experience higher productivity growth than others, both historical experience as well
as the model in this paper suggest that labour will tend to reallocate from the high- to the low-growth
sector (historically, from manufacturing to services) and that the low-growth sector grows as a share of
GDP (Nordhaus, 2008). Rising GDP shares of low-growth sectors imply that aggregate productivity
grows less than what might be expected given sectoral productivity gains. This phenomenon is typically
called “Baumol’s growth disease”.

What are the drivers of this drag? To shed light on this issue, Annex 2 derives an aggregate labour
productivity (LP) growth decomposition, which yields the following relationship:

LPt - LPO _ VA LP]t - LP]O LP]t LP]t
RO e RO RS W C S (7)
JEJ Jj€J JEJ

e —
Within—industry ef fect Labor reallocation ef fect Valuation ef fect

—_—
Aggregate real
LP growth

where s}f;“ is the initial (nominal) value added share of sector j, LP;, is real labour productivity in sector
Jjthatis normalised to 1 in period 0, and Aw;, = %’-‘ = LL#: is the change in the employment share of sector
J.

Since labour tends to move from high to low growth sectors, the labour reallocation term tends to be
negative. Would preventing the reallocation of factors to low-growth sectors therefore improve

aggregate productivity growth? On the one hand, preventing labour from moving to the low growth
sector increases aggregate productivity growth by setting the second term in equation (6) to zero. On
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the other hand, preventing factor reallocation also affects relative output prices and aggregate
productivity growth through a valuation effect (the third term). Using a simple general equilibrium model,
we show in Annex 1 that not allowing for reallocation implies that the additional drag going through the
valuation effect exceeds the gains from labour remaining in the high-growth sector. Hence, preventing
the reallocation of factors to low-growth sectors can increase rather than decrease the Baumol effect.

The interpretation is that without factor reallocation equilibrium in the goods markets must be achieved
entirely through changes in relative output prices. Specifically, the prices in the sectors with higher
productivity growth need to decline more to ensure that demand meets the increased supply. As a
result, even though output evaluated at initial prices would be larger if factors were kept in the high-
growth sector, aggregate real GDP growth would be lower because the implied changes in relative
output prices would lead to a steeper reduction in the output share of the high-growth sectors. We also
confirm this interpretation in the model (see Figure A7 in Annex 3).

To demonstrate the importance of accounting for changes in relative output prices in practice when
aggregating long-run sectoral productivity growth, we implement this decomposition formula on
EUKLEMS & INTANProd data over the 12-year period from 1995 to 2007 in the US, which includes
what is often characterised as the ICT driven boom (Fernald, Inklaar and Ruzic, 2024). Our calculations
show that the Baumol drag has a quantitatively important effect on aggregate real labour productivity
growth over a medium- to long run period (in line with findings by Nordhaus (2008) and Bagaee and
Farhi (2019) over longer horizons preceding our sample) and that the valuation effect in particular plays
on important role (Figure 12).%° In fact, using a formula that does not account for the valuation effect
but only the labour reallocation effect would result in a higher aggregate real labour productivity growth
(53.5% - 13.1% = 40.4%) than the correct aggregate (26.9%), by about 50%, which is a large
discrepancy.

Together, the labour reallocation and the valuation effects imply that sectors with large productivity
gains, on average, saw their share of GDP moderately decline over the period 1995-2007.%° Many other
OECD countries have experienced a similar phenomenon (Annex Figure A4), although to a lesser
degree since the US productivity performance was more concentrated in certain sectors (ICT)
compared to other countries — which led to a stronger Baumol effect in the US.®’

%9 The label “Baumol effect”, as used here, refers to the discrepancy between aggregate productivity growth and within-
industry productivity growth. Alternatively, one could reserve the label for the effect of reallocation from high to low-
growth sectors and distinguish it from the effect of reallocation across sectors with different productivity levels, which
we do not do here (Tang and Wang, 2004).

60 Note that reallocation of factors from high to low-growth sectors is a longer-term sector-level phenomenon. Other
types of reallocation dynamics operate at the sub-sectoral level and over shorter horizons. See Calligaris (2023) for a
recent analysis of the effect of productivity on employment at various levels of aggregation.

61 Note also that the Baumol effect appears to have been particularly pronounced in the period 1995-2007, with much
smaller effects found when the decomposition is applied to more recent time periods.
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Figure 12. Decomposition of aggregate labour productivity growth covering the ICT boom
period in the US (1995-2007)
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Note: Decomposition using equation (7). The sum of the labour reallocation and valuation effect can be considered as the drag arising
through Baumol's growth disease. An alternative decomposition that evaluates labour reallocation at final prices assigns an even large role
for the valuation effect.

Source: Authors’ calculations using the EUKLEMS & INTANProd database.

3.2. Additional scenarios

In addition to our three main scenarios discussed above, we also consider two additional scenarios with
more extreme assumptions. Scenario 4, titled “Large and concentrated gains in most exposed sectors”
(Table 3 and Figure 13), assumes that the variation in sectoral gains is even larger than in our third main
scenario. Specifically, it assumes that the top four exposed sectors — ICT services, publishing, professional
services and finance — experience a 100% micro level gain instead of the previously assumed 30%; while
all other sectors have only the minimum gains that were measured in micro studies (14%; see Figure 3 in
Section 2.2.1). Two observations motivate this choice as a plausible case, even if less likely than our main
scenarios. First, in our review of the micro-level literature (Figure 3), a central task in ICT services, coding,
received more than a 50% productivity boom in controlled experiments by Peng et al. (2023) and
Gambacorta et al. (2024), which could increase further with future improvements in Al capabilities. Second,
during the previous, ICT driven boom, sectoral productivity gains reached several fold increases in the
most impacted activities, such as computer manufacturing (US) or ICT services (UK) (Figure A3 in the
Annex).
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Table 3. Additional illustrative scenarios and their underlying assumptions

4. Large and concentrated

5. Al combined with robotics

performance gains

in all other sectors

Scenarios gains in most e*xposed technology
sectors
Assumptions
Micro-economic 100% in the three most
exposed sectors and 14% 30%

Eloundou et al. (2024) expanded

Exposure Eloundou et al. (2024) capabilities, combined with the
share of physical tasks**

Adoption 40% 40%
nggg; Sectorasllocatlon Restricted Restricted
Demand Inelastic Inelastic
Results for
aggregate annual
TFP growth (in p.p.)
Direct effect 0.55 0.56
Input-output multiplier 0.37 0.41
Baumol effect -0.30 0.00

Total effect 0.61 0.97
Results for annual
labour productivity
growth (in p.p.)***

Total effect 0.92 1.4

|35

Note: See more details in the text. The numbers are rounded to the nearest 2-digit decimal. *We select the four most exposed sectors, which
are ICT services, finance, professional services and publishing and media. **The share of physical tasks is taken as a proxy measure for
capturing the potential impact of robots in production. See more in Section 2.2.2 describing assumptions about Al exposure. ***The labour
productivity growth effects are calculated by assuming a standard multiplier of 1.5 to account for capital accumulation (see Section 2.3.1).

Source: Authors’ calculations.

Figure 13. Large and concentrated Al gains vs. widespread gains due to integration with robotics
technology

Annualised productivity growth impacts over 10-years (in percentage points, calibrated for the US)
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Note: These estimates correspond to Scenario 4 and 5 as defined in Table 3.
Source: Authors’ calculations.

This scenario shows an important drag through the Baumol effect (around 0.3 percentage points; the red
bar), which amounts to a decline of about a third of the productivity boost given by the direct and I-O
multiplier effects (0.92 pp; the sum of the blue and green bars). This arises due to the combination of
uneven sectoral gains and limited reallocation and unresponsive demand. These are not negligible risks
given historical experience on the size of the Baumol effects (Box 1), the strong concerns about Al’s
especially disruptive role in labour markets and the difficulties in managing those (Acemoglu, Autor and
Johnson, 2023; OECD, 2023c) and the low social acceptability of Al in certain economic activities which
can limit demand (Cazzaninga et al, 2024).

Finally, Scenario 5 (Figure 13) illustrates the situation where Al will be combined with or integrated into
robotics technologies, denoted “Al combined with robotics technology”. We estimate the resulting
aggregate TFP gains amount to nearly 1 percentage point annual gains, a large number, without any drag
from Baumol type effects, given the very widespread and relatively equal productivity gains across sectors.

3.3. Sectoral patterns

The sectoral granularity of the model predictions can be used to illustrate some key mechanisms at play
that give rise to the Baumol effect in some of our scenarios. In particular, the importance of frictions can
be illustrated through sector-level outcomes.

Figure 14 plots the change in sectoral value-added shares against sectoral productivity growth rates,
separately for a scenario with and without adjustment frictions arising from limited sectoral reallocation of
factors and very inelastic demand. In both scenarios, sectors with larger productivity gains tend to
experience declining nominal output shares. This reflects both falling relative prices as well as factor
reallocation away from these sectors as less labour is needed to meet demand in these sectors. Clearly,
however, the negative correlations are stronger in the presence of frictions, indicating that the economy is
less able to translate (uneven) sectoral productivity growth into aggregate productivity gains. The reason
is that with inelastic demand and without cross-sectoral reallocation of labour and other factors, prices
would need to fall more strongly to induce sufficient demand for the increased output from the sectors with
large productivity gains (see Annex 1 for a formal argument). This relative price decline more than offsets
the increased production, leading to a larger drop in the most exposed sector’s nominal value-added share.

Figure A8 shows the sectoral contributions to aggregate productivity and further disaggregate them into
direct effects and indirect effects going through lowered input prices.
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Figure 14. Sectoral correlations of productivity gains and changes in value-added shares
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Note: The case with reallocation frictions and inelastic demand corresponds to Scenario 3 (Figure 8 and Table 2). The case without frictions and
rigidities assumes that that factors can freely be reallocated across sectors and that the elasticity of substitution in demand is high (Figure 11,
2nd bar). In both cases, a sector’s productivity growth is derived under the assumption of high adoption rates, expanded capabilities and uneven
gains, and downscaled by the sector’s factor share.

Source: Authors’ calculations.

3.4. Country-specific results

The results presented so far pertain to the US context, given that most current estimates on Al's micro-
level impacts (on productivity and exposure) originate from there. However, under the assumption that
task-level gains from Al and tasks performed by workers in different occupations are the same across
countries, we can extend the results to other countries using I-O tables and the occupation composition of
sectors, in combination with assumptions about future Al adoption. More specifically, we rely on the
following three sources of cross-country variation to obtain country specific predictions for a few major
economies with readily available data.®?

First, we estimate country specific future Al adoption rates by relying on the currently observed adoption
rate differences across countries. These reflect cross-country differences in digital infrastructure, human
capital, and other structural features, as also captured by the Al Preparedness index compiled by
Cazzaniga et al. (2024) and illustrated by its strong correlation with observed adoption rates across
countries (Figure A9 in Annex 3).%% Accordingly, we extrapolate the relative differences in adoption rates
across countries over the next 10 years and use the US future adoption rate (Section 2.2.3, Figure 4) as

62 This covers the set of G7 economies, which can potentially be extended in future work which would account explicitly
for international trade linkages.

63 The relationship is strong but imperfect, as the Figure shows: current adoption rates are lower than what is implied
the Al readiness index for some countries (France and Japan), which may indicate that adoption is expected to rise
faster in the future than assumed by our experiment. This would lead to correspondingly higher predicted productivity
gains for these countries than what is shown on Figure 16.
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the reference point.%* As a consequence, earlier adopting countries will preserve their lead in the future,
consistent with having more advanced digital capacity, skills and regulatory stance with new technologies.
The implied cross-country differences in future adoption rates are large and range from less than 20% in
Italy to 40% in Germany (Figure 15).

Figure 15. Al adoption rate assumptions across countries
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Note: *The US future adoption rate assumption is taken from Figure 6 on adoption. This serves as a reference point to derive the numbers for
the other countries, based on the observed cross-country variation in current adoption rates, which correlates very strongly with the Al
Preparedness Index compiled by Cazzaninga et al. (2024). See more details in the text.

Source: Authors’ calculations relying on Eurostat (for capturing variation within European countries) and preliminary results from the Global
Forum on Productivity survey on Al use in companies (for capturing the variation across US, Europe, Canada and Japan; OECD, 2024b).

Second, we consider country specific economic structures as captured by the variation in sectoral value-
added shares, reflecting country specificities in both production and demand, and I-O linkages.

64 For instance, if a given country has a current Al adoption rate that is half of the US, it will be assumed to be half of
the US in 10 years as well. To estimate cross-country differences in Al adoption taking into consideration differences
in country-specific surveys, we combine two data sources: official Eurostat data, measuring differences within the EU,
and preliminary results from an OECD Global Forum on Productivity survey among firms in several countries, which
serves as a globally harmonised measure to capture differences between the EU and non-EU OECD countries (OECD,
2024b). See more details in Annex 4.2.
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Third, we derive country-specific sectoral exposure to Al, captured by the different occupation composition
of sectors across countries (Annex Figure A5), which are particularly important in some sectors (e.g. in
ICT manufacturing; Annex Figure A6).

Figure 16. Comparing aggregate gains across countries

The estimated impact of Al on aggregate annual TFP growth by country (in percentage points)
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Note: *Underlying sectoral Al exposure rates use numbers from the US due to the lack of suitable internationally harmonised data on the
occupational composition of sectors. Cross-country differences depend to a large extent on assumptions about differences in future adoption
rates, which are derived from current adoption rates and are subject to considerable uncertainty.

Source: Authors’ calculations.

Figure 16 compares the aggregate productivity gains for the largest OECD economies (G7) with that of
the US under the three main scenarios: 1. Low adoption; 2. High adoption and expanded capabilities; and
3. Adding adjustment frictions and uneven sectoral gains to scenario 2. The results show that the combined
effect of the underlying cross-country differences leads to substantial variation in aggregate predicted
productivity gains from Al. In scenarios 1 and 2, similar sized TFP gains arise in Germany to the ones
obtained for the US (at 0.25 and 0.6 percentage points per year, respectively), while in France and ltaly,
the gains would be about half of that (0.1 and 0.3), largely mirroring adoption rate differences.® However,
differences in economic structures — in particular, a larger share of knowledge intensive services — are

65 Data on the employment composition of sectors by detailed occupation are sourced from Eurostat Labour Force
Surveys and US Census Current Population Survey.

8 Given notable successes of developing highly capable Generative Al models in France (e.g. Mistral), it may seem
surprising to see low predicted gains at the macro level there. One missing feature from our framework that could
explain this is the lack of an explicit accounting for Al “production” itself. In essence, the micro level gains in that Al
supplying sector — ICT services — are assumed to be the same as in other sectors; in France as well as in other
countries, given the lack of country specific micro level estimates on micro level gains. When country specific estimates
of micro-level gains become available this can be refined.
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strong enough to compensate in the case of Canada, which results in similar sized predicted gains to
Germany despite lower implied future adoption rates.

In the third scenario with adjustment frictions, differences in the sectoral structure of the economy play an
even stronger role, resulting in substantial drops in the predicted aggregate gains for Germany and in
particular Japan. This finding is in line with their relatively more important reliance on manufacturing and
less on knowledge intensive services, which are strongly impacted by Al (see exposure differences across
sectors in Section 2.2.2).%7

These results should be seen as illustrations driven by the assumptions. Future work can refine the
methodology and further expand the set of countries, potentially by taking into account the role of openness
through cross-country links and introduce different consumption and production elasticities related to
that.68 Nevertheless, the current results underline the crucial role of fast and widespread adoption in
driving stronger economic gains from Al, along with sectoral economic specialisation patterns. Importantly,
policies can influence both levers and hence can have a first order impact on shaping the aggregate
productivity benefits from Al and how they play out differently across countries.

4. Concluding remarks and potential extensions

All'in all, while the potential aggregate productivity gains from Al are significant, they depend on several
conditions, where government policies have a key role to play. First and foremost, they should enable fast
and widespread adoption in places where Al can make a positive impact on productivity and thereby
improve societal well-being.?® Surveys among firms indicate several factors that could limit Al adoption,
relating to the ability as well as the willingness (or incentives) to adopt (Hoffmann and Nurksi, 2021). In
terms of abilities, skills, digital infrastructure, and data access are crucial. Open borders for digital services
facilitate access to the globally most advanced Al models. Robust digital infrastructure and clear
regulations regarding data usage, accountability and lower overall uncertainty about the technology are
essential. Maintaining healthy competition in the market of Al provision is key to ensure high quality and
low prices of access (Andre et al, 2024). A related competition issue can arise if companies using Al
manage to increase their market power — similar to what happened with digital intensive firms (Aghion and
Bunel, 2024; Calligaris, Criscuolo and Marcolin, 2024) — which may lead to lower supply and higher prices
in the short run and may hurt innovation in the longer run. Safety, reliability, and privacy must be also
addressed to build trust in Al technologies, both among firms and consumers, which is a key demand side
channel to enable strong macro-level productivity gains. Social dialogue will also play in important role in
the acceptability of Al in the workplace and to foster investment in skills that are complementary to Al.”°

Further, policies also play a role by helping workers transition to sectors and roles where they are most
valued in the new Al landscape. This includes effective retraining programs and other active labour market

67 For the case of France and Italy, the presence of frictions and uneven gains play a relatively less important role,
given that they increase non-linearly with the size of the gains in the frictionless scenario and that the gains in that
scenario are smaller to begin with.

68 Demand elasticities in reality may be larger in more open economies, at least among tradable goods and services,
potentially affecting the reallocation results (Baumol effect).

%9 Not all applications of Al may be welfare enhancing, even if they could improve measured productivity. Examples
could potentially include Al-powered social media that leverage cognitive biases to the detriment of the user
(Acemoglu, 2024).

70 Lane, Williams and Broecke (2023) find that workers who work in companies that consult them about the adoption
of new technologies were far more positive about the impact of Al on their performance.
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policies. Moreover, well-functioning capital markets are needed to ensure the productive allocation of
capital — including intangible assets such as data, a key complement to Al.

The importance of policies, institutions, and economic structures in reaping the benefits of technological
change is also illustrated historically when looking at the ICT driven boom around 1995-2005. It resulted
in large productivity gains in the US and in a few other countries, whereas their growth benefits were
smaller in Europe (Byrne et al, 2013; Bunel et al, 2024). The limited ICT-related gains in Europe are often
ascribed to an adoption challenge (less successful integration of digital tools in sectors with strong potential
for ICT gains, such as retail), combined with stronger impediments to within sector reallocation in Europe
(Van Ark, O’Mahoney and Timmer, 2008).

Other ongoing megatrends, such as demographic changes and aging populations in particular, also impact
Al adoption. On one hand, older populations may be slower to adopt new technologies, potentially leading
to skill obsolescence. On the other hand, labor shortages resulting from aging demographics may drive
increased adoption of Al and robotics to compensate for the shrinking size of the workforce. However,
slower reallocation and mobility due to aging could present additional challenges.

Future research could focus on various extensions to the framework used here to further refine the analysis
of Al's impact on productivity growth. First, international input-output tables could be leveraged to
incorporate trade linkages and expand the country coverage. Second, a more refined analysis of future Al
adoption across countries and its policy and structural drivers could broaden and strengthen our cross-
country results. Third, considering Al's large energy requirements, future research could investigate what
implications Al adoption will have for energy use and planning and global decarbonisation efforts, under
various assumptions about energy efficiency and other technological improvements. Fourth, evaluating the
risks associated with excessive concentration in the Al market (Aghion and Bunel, 2024) is crucial, as
maintaining competitive markets is essential for fostering Al diffusion and encouraging ongoing innovation.

The model itself could also be enriched to sharpen the understanding of a few channels affecting Al's
impact. For instance, incorporating sector- or time-varying demand elasticities could provide a more
nuanced view of how Al adoption influences different parts of the economy. Modeling physical capital
accumulation explicitly and exploring its complementarities with Al can yield additional insights.”’
Incorporating innovation-boosting effects, while less straightforward, could reveal how Al adoption might
lead to broader and longer-term gains in productivity.”? In addition to productivity, labour market
implications — such as the effects of Al on employment and wages — could be further explored with a more
detailed modelling of labour inputs which also helps exploring the links with ongoing demographic changes

(ageing).

" A further extension could be to investigate the contribution of increased investment in Al producing industries to
labour productivity. For instance, ICT investments contributed to sustaining labour productivity growth during the ICT
revolution in the US, even if TFP improvements from ICT technologies were also of central importance (Gordon and
Sayed, 2020).

72 Yet, Al could also hamper innovation, for instance if Al-driven increase in fraud and hallucinations due to lack of
regulation damages trust and the circulation of ideas.

MIRACLE OR MYTH? ASSESSING THE MACROECONOMIC PRODUCTIVITY GAINS FROM ARTIFICIAL INTELLIGENCE © OECD 2024

Restricted Use - A usage restreint



42 |

References

Acemoglu, D. (2024) “The Simple Macroeconomics of Artificial Intelligence”, Economic Policy, 2024;,
eiae042, https://doi.org/10.1093/epolic/eiae042

Acemoglu, D., U. Akcigit and W. Kerr (2016), “Networks and the Macroeconomy: An Empirical
Exploration”, NBER Macroeconomics Annual, Vol. 30/1, pp. 273-335.

Acemoglu, D. and D. Autor (2011), "Skills, Tasks and Technologies: Implications for Employment and
Earnings,"Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor
Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.

Acemoglu, D., D. Autor and S. Johnson (2023), Can we Have Pro-Worker Al? Choosing a path of
machines in service of minds, MIT Shaping the Future of Work Initiative, Policy Memo.

Acemoglu, D., D. Autor and C. Patterson (2024) “Bottlenecks: Sectoral Imbalances and the US
Productivity Slowdown,” NBER Macroeconomics Annual, University of Chicago Press, vol. 38(1),
pages 153-207.

Acemoglu, D. and P. Restrepo (2018), "The Race between Man and Machine: Implications of
Technology for Growth, Factor Shares, and Employment," American Economic Review, 108 (6):
1488-1542.

Acemoglu, D. and P. Restrepo (2019), "Atrtificial Intelligence, Automation, and Work," in: The Economics
of Artificial Intelligence: An Agenda, p. 197-236, University of Chicago Press

Aghion, P. and S. Bunel (2024), “Al and Growth: Where Do We Stand?”, https://www.frbsf.org/wp-
content/uploads/Al-and-Growth-Aghion-Bunel.pdf

Aghion, P., B. Jones and C. Jones (2019), “Artificial Intelligence and Economic Growth”, in: The
Economics of Attificial Intelligence: An Agenda, p. 237-82, University of Chicago Press

Agrawal, A., J. Gans and A. Goldfarb (2023), "The Turing Transformation: Artificial intelligence,
intelligence augmentation, and skill premiums". National Bureau of Economic Research Working
Papers No. 31767.

Agrawal, A., J. Gans and A. Goldfarb (2022), “Power and Prediction: The Disruptive Economics of
Artificial Intelligence”, Harvard Business Review Press

Agrawal, A., J. Gans and A. Goldfarb (2019), “Economic Policy for Atrtificial Intelligence”, Innovation
Policy and the Economy, Vol. 19.

Akcigit, U. and S. T. Ates (2021), "Ten Facts on Declining Business Dynamism and Lessons from
Endogenous Growth Theory." American Economic Journal: Macroeconomics, 13 (1): 257-98.
Aldasoro, Ifiaki, S. Doerr, L. Gambacorta and D. Rees (2024), "The impact of artificial intelligence on

output and inflation," BIS Working Papers 1179, Bank for International Settlements.

Alderucci, D. et al. (2020), Quantifying the Impact of Al on Productivity and Labor Demand: Evidence
from U.S. Census Microdata, https://www.aeaweb.org/conference/2020/preliminary/paper/Tz2HdRna.

Andre, C. and P. Gal (2024), “Reviving productivity growth: A review of policies”, OECD Economics
Department Policy Paper, No. 1822., OECD Publishing, Paris,

MIRACLE OR MYTH? ASSESSING THE MACROECONOMIC PRODUCTIVITY GAINS FROM ARTIFICIAL INTELLIGENCE © OECD 2024

Restricted Use - A usage restreint


https://ideas.repec.org/h/eee/labchp/5-12.html
https://ideas.repec.org/h/eee/labchp/5-12.html
https://ideas.repec.org/s/eee/labchp.html
https://ideas.repec.org/b/eee/labhes/5.html
https://ideas.repec.org/b/eee/labhes/5.html
https://ideas.repec.org/a/ucp/macann/doi10.1086-729196.html
https://ideas.repec.org/a/ucp/macann/doi10.1086-729196.html
https://ideas.repec.org/s/ucp/macann.html
https://ideas.repec.org/h/nbr/nberch/14027.html
https://ideas.repec.org/p/bis/biswps/1179.html
https://ideas.repec.org/p/bis/biswps/1179.html
https://ideas.repec.org/s/bis/biswps.html

| 43

Andre, C., M. Betin, P. Gal and P. Peltier (2024), “Competition in the market of Atrtificial Intelligence:
monitoring developments by new indicators”, forthcoming.

Andrews, D., C. Criscuolo and P. Gal (2016), "The Best versus the Rest: The Global Productivity
Slowdown, Divergence across Firms and the Role of Public Policy", OECD Productivity Working
Papers, No. 5, OECD Publishing, Paris, https://doi.org/10.1787/63629cc9-en.

Artificial Intelligence Commission of France (2024), IA : Notre Ambition pour la France,
https://www.gouvernement.fr/actualite/25-recommandations-pour-lia-en-france.

Atalay, E. (2017), "How Important Are Sectoral Shocks?", American Economic Journal:
Macroeconomics, 9 (4): 254-80.

Autor, D., C. Chin, A. Salomons and B. Seegmiller (2024), “New Frontiers: The Origins and Content of
New Work, 1940-2018", The Quarterly Journal of Economics, Volume 139, Issue 3, August 2024,
Pages 1399-1465, https://doi.org/10.1093/qje/qjae008

Autor, D. and D. Dorn (2013), "The Growth of Low-Skill Service Jobs and the Polarization of the US
Labor Market," American Economic Review, American Economic Association, vol. 103(5), pages
1553-1597, August.

Baily, M., E. Brynjolfsson and A. Korinek (2023), Machines of mind: The case for an Al-powered
productivity boom. Brookings Institution, https://www.brookings.edu/articles/machines-of-mind-the-
case-for-an-ai-powered-productivity-boom/

Baqaee, D.R. and Farhi, E. (2019), The Macroeconomic Impact of Microeconomic Shocks: Beyond
Hulten’s Theorem. Econometrica, 87: 1155-1203. https://doi.org/10.3982/ECTA15202

Baumol, W.J. (1967). “Macroeconomics of Unbalanced Growth: The Anatomy of Urban Crisis”? The
American Economic Review. 57 (3): 415-426.

Bergeaud, A. (2024), “The Past, Present and Future of European Productivity”, paper prepared for the
ECB Forum on Central Banking “Monetary policy”in an era of transformation”, 1-3 July 2024, Sintra,
Portugal

Ben-Ishai, G. J. Dean, J. Manyika, R. Porat, H. Varian and K. Walker. (2024), “Al and the Opportunity for
Shared Prosperity: Lessons from the History of Technology and the Economy”, arXiv preprint
arXiv:2401.09718.

Berlingieri, G., S. Calligaris, C. Criscuolo and R. Verlhac (2020), "Laggard firms, technology diffusion and
its structural and policy determinants", OECD Science, Technology and Industry Policy Papers, No.
86, OECD Publishing, Paris, https://doi.org/10.1787/281bd7a9-en.

Besiroglu, Tamay and Marius Hobbhahn (2022), “Trends in GPU Price-Performance,” Technical Report,
EpochAl 2022.

Bessen, J. (2018), “Al and Jobs: The Role of Demand”, National Bureau of Economic Research Working
Papers, No. 24235.

Besson, L., A. Dozias, C. Faivre, C. Gallezot, J. Gouy-Waz, B. Vidalenc (2024), “The Economic
Implications of Artificial Intelligence”, Tresor-Economics, No. 341, April 2024

Bick, A., A. Blandin and D. J. Deming (2024), "The Rapid Adoption of Generative Al", NBER Working
Papers 32966, National Bureau of Economic Research, Inc.

Briggs, J. and D. Kodnani (2023), “The Potentially Large Effects of Artificial Intelligence on Economic
Growth”, Goldman Sachs Economics Research.

Brynjolfsson, E., D. Li and L. Raymond (2023), “Generative Al at Work”, National Bureau of Economic
Research Working Papers No. 31161.

Brynjolfsson, E., Rock, D., & Syverson, C. (2021), “The productivity J-curve: How intangibles
complement general purpose technologies”, American Economic Journal: Macroeconomics, 13(1),
333-372.

MIRACLE OR MYTH? ASSESSING THE MACROECONOMIC PRODUCTIVITY GAINS FROM ARTIFICIAL INTELLIGENCE © OECD 2024

Restricted Use - A usage restreint


https://doi.org/10.1787/63629cc9-en
https://doi.org/10.1093/qje/qjae008
https://www.brookings.edu/articles/machines-of-mind-the-case-for-an-ai-powered-productivity-boom/
https://www.brookings.edu/articles/machines-of-mind-the-case-for-an-ai-powered-productivity-boom/
https://doi.org/10.3982/ECTA15202
http://piketty.pse.ens.fr/files/Baumol1967.pdf
https://en.wikipedia.org/wiki/The_American_Economic_Review
https://en.wikipedia.org/wiki/The_American_Economic_Review
https://doi.org/10.1787/281bd7a9-en
https://ideas.repec.org/p/nbr/nberwo/32966.html
https://ideas.repec.org/s/nbr/nberwo.html
https://ideas.repec.org/s/nbr/nberwo.html

44 |

Bunel, S., G. Bijnens, V. Botelho, E. Falck, V. Labhard, A. Lamo, O. Réhe, J. Schroth, R. Sellner, J.
Strobel and B. Anghel (2024), "Digitalisation and productivity," Occasional Paper Series 339,
European Central Bank.

Byrne, D. M., S. D. Oliner and D. E. Sichel (2013). "Is the Information Technology Revolution
Over?," International Productivity Monitor, Centre for the Study of Living Standards, vol. 25, pages 20-
36, Spring.

Calligaris, S., F. Calvino, R. Verlhac and M. Reinhard (2023), “Is there a trade-off between productivity
and employment?: A cross-country micro-to-macro study”, OECD Science, Technology and Industry
Policy Papers, No. 157, OECD Publishing, Paris, https://doi.org/10.1787/99bede51-en.

Calligaris, S., C. Criscuolo and L. Marcolin (2024), “Mark-ups in the digital era”, Centre for Economic
Performance, London School of Economics,
https://cep.Ise.ac.uk/_NEW/PUBLICATIONS/abstract.asp?index=10858.

Callligaris, S., Chaves, M., Criscuolo, C., De Lyon, J., Greppi, A., Pallanch, O., (2024), “Exploring the
evolution and the state of competition in the EU”, Protecting competition in a changing world,
European Commission.

Calvino, F. and L. Fontanelli (2023), “A portrait of Al adopters across countries: Firm characteristics,
assets’ complementarities and productivity”, OECD Science, Technology and Industry Working
Papers, No. 2023/02, OECD Publishing, Paris, https://doi.org/10.1787/0fb79bb9-en.

Causa, O., et al. (2022), "Getting on the job ladder: The policy drivers of hiring transitions", OECD
Economics Department Working Papers, No. 1710, OECD Publishing, Paris,
https://doi.org/10.1787/0304c673-en.

Cazzaniga, M. et al. (2024), “Gen-Al: Atrtificial Intelligence and the Future of Work”, IMF Staff Discussion
Notes No. 2024/001

Council of Economic Advisers (2024), Economic Report of the President,
https://www.whitehouse.gov/wp-content/uploads/2024/03/ERP-2024 .pdf.

Cui, Kevin Zheyuan, Mert Demirer, Sonia Jaffe, Leon Musolff, Sida Peng, and Tobias Salz (2024), "The
Productivity Effects of Generative Al: Evidence from a Field Experiment with GitHub Copilot.",
https://mit-genai.pubpub.org/pub/v5iixksv/release/2

Czarnitzki, D., G. Fernandez and C. Rammer (2023), “Artificial intelligence and firm-level productivity”,
Journal of Economic Behavior & Organization, Vol. 211, pp. 188-205.

Damioli, G., V. Van Roy and D. Vertesy (2021), “The impact of artificial intelligence on labor productivity”,
Eurasian Business Review, Vol. 11, pp. 1-25.

Demmou, L. and G. Franco (2021), “Mind the financing gap: Enhancing the contribution of intangible
assets to productivity”, OECD Economics Department Working Papers, No. 1681, OECD Publishing,
Paris, https://doi.org/10.1787/7aefd0d9-en.

De Vries, G. J., Gentile, E., Miroudot, S. and K. M. Wacker (2020), "The rise of robots and the fall of
routine jobs," Labour Economics, Elsevier, vol. 66(C).

Decker, R. A., J. Haltiwanger, R. S. Jarmin, and J. Miranda (2020), "Changing Business Dynamism and
Productivity: Shocks versus Responsiveness." American Economic Review, 110 (12): 3952-90.

Dell’Acqua, F. et al. (2023), “Navigating the Jagged Technological Frontier: Field Experimental Evidence
of the Effects of Al on Knowledge Worker Productivity and Quality”, Harvard Business School
Technology & Operations Mgt. Unit Working Paper No. 24-013.

Dingel J.1., and Neiman B (2020), “How Many Jobs Can Be Done at Home?”, Journal of Public
Economics, 189: 104235

Eloundou, T., S. Manning, P. Mishkin and D. Rock (2024), “GPTs are GPTs: Labour market impact
potential of LLMs”, Science 384 (6702), 1306-1308

MIRACLE OR MYTH? ASSESSING THE MACROECONOMIC PRODUCTIVITY GAINS FROM ARTIFICIAL INTELLIGENCE © OECD 2024

Restricted Use - A usage restreint


https://ideas.repec.org/p/ecb/ecbops/2024339.html
https://ideas.repec.org/s/ecb/ecbops.html
https://ideas.repec.org/a/sls/ipmsls/v25y20133.html
https://ideas.repec.org/a/sls/ipmsls/v25y20133.html
https://ideas.repec.org/s/sls/ipmsls.html
https://doi.org/10.1787/99bede51-en
https://doi.org/10.1787/0fb79bb9-en
https://www/
https://mit-genai.pubpub.org/pub/v5iixksv/release/2
https://doi.org/10.1787/7aefd0d9-en
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=8dwbJHkAAAAJ&sortby=pubdate&citation_for_view=8dwbJHkAAAAJ:ULOm3_A8WrAC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=8dwbJHkAAAAJ&sortby=pubdate&citation_for_view=8dwbJHkAAAAJ:ULOm3_A8WrAC

| 45

Felten, E., M. Raj and R. Seamans (2021), “Occupational, industry, and geographic exposure to artificial
intelligence: A novel dataset and its potential uses”, Strategic Management Journal, Volume 42, Issue
12, December 2021, Pages 2195-2217

Fernald, J. (2015) "Productivity and Potential Output before, during, and after the Great Recession,"
NBER Macroeconomics Annual, University of Chicago Press, vol. 29(1), pages 1-51.

Fernald, J., Inklaar, R. and Ruzic, D. (2024), The Productivity Slowdown in Advanced Economies:
Common Shocks or Common Trends?,Review of Income and
Wealth. https://doi.org/10.1111/roiw.12690

Filippucci, F., et al. (2024), “The impact of Artificial Intelligence on productivity, distribution and growth:
Key mechanisms, initial evidence and policy challenges”, OECD Artificial Intelligence Papers, No. 15,
OECD Publishing, Paris, https://doi.org/10.1787/8d900037-en.

Forbes Magazine (2024), “OpenAl-Powered Humanoid Robot Fills Spot At BMW Assembly Plant”, 7 July
2024, https://www.forbes.com/sites/chriswestfall/2024/07/07/openai-powered-humanoid-robot-fills-
spot-at-bmw-assembly-plant/

Furman, J. and R. Seamans (2019), “Al and the Economy”, Innovation Policy and the Economy, Vol. 19,
pp. 161-191

Gambacorta, L., H. Qiu, S. Shan, and D. M. Rees (2024), “Generative Al and labour productivity: a field
experiment on coding”, No. 1208., Bank for International Settlements Working Papers.
https://www.bis.org/publ/work1208.pdf

Goldin, lan, P. Koutroumpis, F. Lafond, and J. Winkler (2024), “Why Is Productivity Slowing Down?”
Journal of Economic Literature, 62 (1): 196—268.

Goldman Sachs (2024), “Top of Mind”, Global Macro Research, Issue 129, June 25

Google (2024), “Al achieves silver-medal standard solving International Mathematical Olympiad
problems”, DeepMind Research Blog, htips://deepmind.google/discover/blog/ai-solves-imo-problems-
at-silver-medal-level/

Gordon, R. J. and Sayed, H. (2020), “Transatlantic technologies: The role of ICT in the evolution of US
and European productivity growth”, National Bureau of Economic Research Working Papers No.
27425

Haslberger, M., J. Gingrich and J. Bhatia (2023), No great equalizer: experimental evidence on Al in the
UK labor market, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4594466.

Hoffmann, M. and L. Nurski (2021) “What is holding back artificial intelligence adoption in Europe?”,
Policy Contribution 24/2021, Bruegel

Hulten, C. R (1978), “Growth Accounting with Intermediate Inputs,” The Review of Economic Studies, 45
(3), 511-518.

JP Morgan (2024), “A strong economy in a fragile world”, Mid-Year Outlook.

Lane, M., M. Williams and S. Broecke (2023), “The impact of Al on the workplace: Main findings from the
OECD Al surveys of employers and workers”, OECD Social, Employment and Migration Working
Papers, No. 288, OECD Publishing, Paris, https://doi.org/10.1787/ea0a0fe1-en.

Lipsey, R., K. Carlaw and C. Bekar (2005), Economic Transformations: General Purpose Technologies
and Economic Growth, Oxford University Press, Oxford UK.

Lorenz, P., K. Perset and J. Berryhill (2023), “Initial policy considerations for generative artificial
intelligence”, OECD Artificial Intelligence Papers, No. 1, OECD Publishing,

Paris, https://doi.org/10.1787/fae2d1e6-en

McElheran, K. J. F. Li, E. Brynjolfsson, Z. Kroff, E. Dinlersoz, L. Foster and N. Zolas (2024) "Al adoption
in America: Who, what, and where," Journal of Economics & Management Strategy, vol 33(2), pages
375-415.

MIRACLE OR MYTH? ASSESSING THE MACROECONOMIC PRODUCTIVITY GAINS FROM ARTIFICIAL INTELLIGENCE © OECD 2024

Restricted Use - A usage restreint


https://doi.org/10.1111/roiw.12690
https://doi.org/10.1787/8d900037-en
https://www.forbes.com/sites/chriswestfall/2024/07/07/openai-powered-humanoid-robot-fills-spot-at-bmw-assembly-plant/
https://www.forbes.com/sites/chriswestfall/2024/07/07/openai-powered-humanoid-robot-fills-spot-at-bmw-assembly-plant/
https://www.bis.org/publ/work1208.pdf
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://doi.org/10.1787/ea0a0fe1-en
https://doi.org/10.1787/fae2d1e6-en
http://doi.org/10.1111/jems.12576
http://doi.org/10.1111/jems.12576

46 |

McKinsey (2023), The economic potential of generative Al. McKinsey Report January 2023.

Nordhaus, W. D. (2008), “Baumol’s Diseases: A Macroeconomic Perspective”, The B.E. Journal of
Macroeconomics, vol. 8, no. 1 https://doi.org/10.2202/1935-1690.1382

Nordhaus, W. D. (2021), “Are We Approaching an Economic Singularity? Information Technology and
the Future of Economic Growth”, American Economic Journal: Macroeconomics, 13 (1), 299-332.

Noy, S. and W. Zhang (2023), Experimental Evidence on the Productivity Effects of Generative Artificial
Intelligence. Science 381,187-92(2023).

OECD (2015), The Future of Productivity, OECD Publishing,
Paris, https://doi.org/10.1787/9789264248533-en.

OECD (2019b), Artificial Intelligence in Society, OECD Publishing,
Paris, https://doi.org/10.1787/eedfee77-en.

OECD (2023a), Recommendation of the Council on Artificial Intelligence,
https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449.

OECD (2023b), Productivity Compendium 2023

OECD (2023c), OECD Employment Outlook 2023: Artificial Intelligence and the Labour Market, OECD
Publishing, Paris, https://doi.org/10.1787/08785bba-en

OECD (2023d), Key Issues in Digital Trade Review: OECD Global Forum on Trade 2023 “Making Digital
Trade Work for All”, OECD Publishing, Paris, https://doi.org/10.1787/b2a9c4b1-en.

OECD (2024a), “Artificial intelligence, data and competition”, OECD Atrtificial Intelligence Papers, No. 18,
OECD Publishing, Paris, https://doi.org/10.1787/e7e88884-en.

OECD (2024b), Survey by the Global Forum on Productivity, forthcoming

OECD (2024c), Recommendation of the Council on Atrtificial Intelligence,
https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449

O*NET (2023), O*NET 27.2 Database.

Ouyang, Long, et al., (2022), "Training language models to follow instructions with human
feedback," Advances in neural information processing systems, 35: 27730-27744.

Peng, S. et al. (2023), The Impact of Al on Developer Productivity: Evidence from GitHub Copilot.
arXiv:2302.06590

Pizzinelli, C, A Panton, M Mendes Tavares, M Cazzaniga, and L Li, (2023), “Labor Market Exposure to
Al: Cross-country Differences and Distributional Implications,” IMF Working Paper, International
Monetary Fund 2023.

Restuccia, D., and R. Rogerson (2017), "The Causes and Costs of Misallocation", Journal of Economic
Perspectives, 31 (3): 151-74.

Rockall, E., C. Pizzinelli and M. M. Tavares (2024), “Artificial Intelligence Adoption and Inequality.”
Unpublished, International Monetary Fund, Washington, DC.

Svanberg, M., Li, W., Fleming, M., Goehring, B. and N. Thompson (2024), “Beyond Al Exposure: Which
Tasks are Cost-Effective to Automate with Computer Vision?”
https://ssrn.com/abstract=4700751 or http://dx.doi.org/10.2139/ssrn.4700751

Syverson, C. (2024), “Unpacking the mysteries of productivity”, interview with McKinsey Global Institute,
2 July 2024, https://www.mckinsey.com/mgi/forward-thinking/unpacking-the-mysteries-of-productivity

Trammell, P. and A. Korinek (2023), “Economic Growth under Transformative Al”, National Bureau of
Economic Research Working Papers No. 31815.

Van Ark, Bart, Mary O’Mahoney, and Marcel P. Timmer (2008), “The Productivity Gap between Europe
and the United States: Trends and Causes,” Journal of Economic Perspectives, 22 (1). 25—-44.

MIRACLE OR MYTH? ASSESSING THE MACROECONOMIC PRODUCTIVITY GAINS FROM ARTIFICIAL INTELLIGENCE © OECD 2024

Restricted Use - A usage restreint


https://doi.org/10.2202/1935-1690.1382
https://doi.org/10.1787/9789264248533-en
https://doi.org/10.1787/eedfee77-en
https://legalinstruments/
https://doi.org/10.1787/08785bba-en
https://doi.org/10.1787/b2a9c4b1-en
https://doi.org/10.1787/e7e88884-en
https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449
https://ssrn.com/abstract=4700751
http://dx.doi.org/10.2139/ssrn.4700751
https://www.mckinsey.com/mgi/forward-thinking/unpacking-the-mysteries-of-productivity

| 47
Varian, H. (2019), “Artificial Intelligence, Economics, and Industrial Organization” in: The Economics of

Atrtificial Intelligence: An Agenda, pp 399 — 422., University of Chicago Press

WEF (2023), Jobs of Tomorrow: Large Language Models and Jobs, WEF White Papers, September
2023.

MIRACLE OR MYTH? ASSESSING THE MACROECONOMIC PRODUCTIVITY GAINS FROM ARTIFICIAL INTELLIGENCE © OECD 2024

Restricted Use - A usage restreint



48 |

Annex A. Auxiliary analyses, tables, and figures

1. A simple multisector general equilibrium model

Our main results are derived from a multi-sector model with a full set of input-output linkages, calibrated to
OECD economies. Some of the key insights from this model, however, can also be derived from a
simplified model without input-output linkages.”® The first insight is that aggregate productivity gains are
diminished when productivity growth differs starkly across sectors. The second insight is that differential
growth rates slow down aggregate productivity growth more if demand is relatively inelastic, and if factors
of production cannot easily be reallocated towards sectors where they are most needed.

To derive these insights, consider a simple multi-sector economy with I € N sectors. In each sector, i € I,
output is produced linearly from labour according to

yi = AiLy,

where A; denotes the level of (labour-) productivity in sector i. Final demand is represented by a constant
elasticity of substitution (CES) aggregator,

N o-1 %
y = (Z Yo ) (8)

with ¥¥ . a; = 1and 0 < o < 1. In this simple economy, there are no input-output linkages across sectors.
By setting o lower than 1, we assume that the goods and services produced in the different sectors are
gross complements rather than substitutes. We first assume labour is mobile across sectors but relax that
assumption later.

How do sectoral productivity shocks, that is changes in 4;, translate into changes in aggregate output, Y?
A foundational result in the literature on the aggregation of microeconomic productivity shocks is Hulten’s
theorem. Hulten (1978) showed that in a competitive economy with constant returns to scale,
macroeconomic productivity gains can be approximated as a weighted sum of microeconomic productivity
changes at the firm or sectoral level where the weights of a given firm or sector, 1;, is the ratio of its sales
to GDP:

dlog(Y) = » A;dlog(A))
Z )

In a realistic economy with input-output linkages, a part of each sector’s output is used as in input in other
sectors, so that sectoral sales exceed value added and the sum of the weights in the above decomposition
formula is larger than 1. Such economies are characterised by a multiplier that captures the fact that a
positive productivity shock in one sector also improves the productive capacity of other sectors by lowering
their input prices. In the context of the simple economy studied here, sales equal value added, and Hulten’s

3 The following derivations are based directly on the notation and insights in Bagaee and Farhi (2019).
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theorem implies that aggregate productivity gains can be approximated by the value-added share weighted
average of sectoral productivity gains.

Hulten’s theorem provides a powerful tool for aggregating microeconomic shocks that does not require any
knowledge of the underlying structure of the economy. However, the approximation provided by Hulten’s
theorem is only exact to a first order and can therefore be strongly biased when the microeconomic shocks
are large and the economy is characterised by important nonlinearities stemming from non-unitary
elasticities of substitution, network linkages, or barriers to the reallocation of productive factors. In other
words, Hulten’s theorem ignores precisely those aspects of real economies that give rise to Baumol’'s
growth disease.

Baqaee and Farhi (2019) extend the foundational theorem of Hulten (1978) to obtain a second-order
approximation of the aggregate productivity gains which accounts for the non-linearities that are ignored
in the linear approximation. In the context of our simple economy, the second-order approximation can be
written as follows:

dlog(Y) = ) A;dlog(A))
; (10)

+% 2&(1 —2) (1 —%) (d1og(a))’

i€l

|

1
+ Z 2(1-2-4) (1 - —) dlog(A;) dlog(A;) |-
iL,JEI P
1#]
In this formulation, p is a general equilibrium (pseudo) elasticity of substitution that captures how the
relative sales shares of any two sectors change under an exogenous productivity shock to one of the
sectors. In contrast to the structural elasticity o, the general equilibrium elasticity p depends on the
constraints we impose on the economy. For example, whether labour can be freely reallocated across
sectors affects the size of p.

Importantly, the second term on the right-hand side captures the drag on aggregate growth stemming from
the tendency of sectors with low productivity growth to experience increasing nominal output shares
relative to sectors with high productivity growth. Hence, this term can be interpreted as a quantification of
the importance of Baumol's cost disease.

The above formula is useful to gain intuition for when to expect Baumol's growth disease to play an
important role. First, it can be shown that in our model p = 1/(2 — 0), so that p is smaller than 1 whenever
o is smaller than 1, which in turn implies that the reallocation term will indeed be negative. Moreover, note
that the reallocation term will more strongly negative, the lower the elasticity of substitution, o, and the
more unequal the productivity growth across sectors, as can be seen in the formula above.

Table A1 shows the size of the two terms in the above decomposition formula for different values of ¢ and
different sectoral productivity growth rates in a stylised model with two equally sized sectors.
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Table A.1. A stylised example

dlog(4,) =.4 dlog(41) =0
dlog(A;) =.6 dlog(A;) = 1
First-order 5 5 5 5
effect
Baumol effect -.0065 -.0585 -.0125 -.1125

Source: authors’ calculations

We can also consider introducing reallocation frictions to this economy. For example, consider the situation
where factors cannot be reallocated between sectors. In this case, the general equilibrium elasticity is
equal the structural elasticity so that we have p = ¢. As a consequence, for any ¢ < 1, the general
equilibrium elasticity is smaller when labour mobility is restricted relative to the case where labour can
move between sectors. Hence, the Baumol effect will be larger in this case.

The interpretation is that equilibrium in the goods markets must be achieved entirely through changes in
relative output prices. Specifically, the prices in the sector with higher productivity growth will need to
decline more than before to ensure that demand equals the increased supply. As a result, even though
output evaluated at initial prices would be larger if labour was forced to stay in the sector with the larger
productivity shock, real GDP growth is lower in this case because the implied changes in relative output
prices lead to larger reduction in the output share of the high productivity sector.

2. An aggregate labour productivity growth decomposition to illustrate Baumol’s
growth disease

To understand how restricting factor reallocation affects aggregate growth through changes in relative
output prices, we derive an aggregate labour productivity growth decomposition.

PeYe

The relationship between aggregate nominal value added per worker, - and sectoral nominal value
t
PjtYj .
added per worker, % can be written as follows:
jt

PY, Lj y P;Ye
L Z L L (11)
t t J
J€J] ~ —
Industry j’s Industry j’s
employment share value added per worker

To obtain real labour productivity, LP;, we divide by the aggregate price index P, to get:

Lo ow Yo P Le Y
A =
L, - Py L¢ L]' (1 2)
JEJ — — (]
Industry j’s Industry j's Industry j’s
relative ouput price  employment share labour productivity

Hence, aggregate real labour productivity growth depends on changes in sectoral real labour productivity,

Y . , Lj . . Pj .
L—", as well as on changes in the sectors’ employment shares, Li and relative output prices, Pi In particular,
jt t t
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for given sectoral labour productivity growth rates, aggregate labour productivity growth will be diminished
to the extent that sectors with high productivity growth see their relative output price and employment share
decline relative to sectors with low productivity growth. Given that aggregate productivity growth depends
on how the sectoral productivity gains affect quantities as well as prices, we need a macroeconomic
framework that allows us to understand the evolution of both types of variables in equilibrium.

It is common to see decomposition formulas that decompose yearly aggregate labour productivity growth
into a “within-industry effect” and one or several “reallocation effects”, and that do not explicitly account for
changes in relative sectoral output prices. For example, consider the following standard decomposition of
aggregate labour productivity growth:

— LP() LP LPjt
- + AW]'t F
=y Fo =y 0 (13)
i J
Aggregate real
LP growth Within—industry ef fect Labor reallocation ef fect

where s |s the initial (nominal) value added share of sector j, LP;; is real labour productivity in sector j,

L . ..
Aw; = Li -2 is the change in employment share of sectorj, and real values are derived by normalising
t

0

e , meaning it captures both the initial
LPO LPjo’

relative productivity of sector j as well as |ts differential growth rate over time.™

prices to 1 at time 0. Note that the term £ can be written as —

Applied to yearly growth rates, or when using a fixed weight price index (e.g. with a fixed base year), this
decomposition is exact. However, it is only approximative when applied to decompose growth over longer
periods, since the weights in the aggregate price index are typically updated to reflect changes in the
sectoral composition of the economy (chain-linking). Indeed, measures of real GDP growth rely on
regularly updated weights of the various expenditure items in the construction of the aggregate price index
P, (GDP deflator) in all OECD countries and in more and more non-OECD ones.

We can augment the above formula to capture the effect of changing relative output prices on aggregate
real labour productivity growth (which we label “valuation effect”) by adding a third term:

LP, — LP, o [LPie = LPyg Z LP,, LP,
L0 N a2 o) Aw;, —2t +Z (Api) 2L
LP, ZSJO LP;, Wit P, wie(8pse) 7

-0 3] ] (14)
Aggregate real - -
LP growth Within—industry ef fect Labor reallocation ef fect Valuation ef fect

where Apj, = %— 1 captures the relative price change of sector j.75 This decomposition is exact when

applied to decompose aggregate real labour productivity growth over short as well as long time periods.

4 This gives rise to the possibility of decomposing the affected terms further into a static and dynamic element (see
Tang and Wang, 2004 and OECD, 2023b) which is not the focus of our interest here.

75 An alternative possibility is to evaluate labour reallocation at final prices and to compute the valuation at initial
employment shares, which yields an even large role for the change in relative prices term.
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3. Additional tables and figures

Figure A.1. High correlation between alternative Al exposure estimates at the occupation level

Felten et al. (2021, non-Generative Al) and Eloundou et al. (2024, Generative Al)

Felten et al. (2021)

Correlation: .8825269527304795

Note: Correlation at the US-SOC occupation level.

Source: Author’s calculations using the cited sources.

T T T
3 4
Eloundou et al. (2023)

Figure A.2. The evolution of the adoption of previous General Purpose Technologies

by households (%, United States)

80
- X 2001 =
60 Internet-1 X 2000 L Computers,--
X 1997 41929
50 1993 #1919
40 1089
30 o " Electricity
S —- z -
_-A 1909
20 X 108a [
10 IA‘ISQQ‘/ .................... B
0 L ] ] | | | | |
0 5 10 15 20 25 30 35

Note: *We consider for the introduction of the user-friendly breakthrough variant of the technology the following: for electricity, development of
electric motor; for PC, introduction of IBM PC. Dotted lines represent a high-level polynomial fit on the observed dates.
Source: For PC and electricity, Briggs and Kodnani (2023).
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Figure A.3. Sectoral TFP growth during 1995-2005 in the US and UK (in %)
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Source: EUKLEMS & INTANProd.

Figure A.4. The contribution of the Baumol growth disease and reallocation to overall productivity
growth in selected countries*

Based on labour productivity (1995-2005)

1.5

0-II I||l||||ll I.II 1hil1ll

OFFFES CFEEE S RFFON XL DR @ IO v &

I (Weighted) within-industry labour productivity growth
Il Reallocation/Baumol effect

Note: *Driven by data availability. See details in Box 1.
Source: EUKLEMS & INTANProd dataset
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Figure A.5. Estimated share of tasks exposed to Al by country

Averaged across sectors
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Source: Eloundou et al. (2024) combined with Labour Force Surveys.

Figure A.6. Estimated share of tasks exposed to Al by country: zooming in on ICT manufacturing

in ICT producing manufacturing*
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Note: * Sector C26 Manufacture of computer, electronic and optical products
Source: Eloundou et al. (2024) combined with Labour Force Surveys.
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Figure A.7. Sectoral correlations of productivity gains
shares
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Note: The case with factor reallocation corresponds to the middle bar in Figure 11. The case without factor reallocation corresponds to Scenario
3 (Figure 10 and Table 3). In both cases, a sector’'s productivity growth is derived under the assumption of high adoption rates, expanded

capabilities and uneven gains, and downscaled by the sector’s factor share.
Source: Authors’ calculations.

Figure A.8. The contribution of sectors to aggregate p

0.09

roductivity growth

0.08
007

0086 -

pp.)
o
(=]
(4]

o
o
b

003

0.02

0.01
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Energy min.

Non-energ. min
Utilities
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Mining sup.
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Textiles
Wood prod.
Paper/print.
Coke/petrol.
Chemicals
Pharma.
Rubber/plast.
Basic metals
Fab. metals
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Motor veh.
Other trans.
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Wateriwaste
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Air trans.
Warehouse
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Telecom.
Prof./tech.
Admin/sup.
Education
Health/soc.
Arts/rec.
Other serv.
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IT/info serv.
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Note: Sectoral sources of aggregate productivity growth under Scenario 2. We attribute the 1-O link driven indirect effect to the sectors which
use cheaper and more abundant intermediates from upstream sectors following productivity improvements in those upstream sectors. Thereby
these downstream sectors magnify the productivity gains of these upstream sectors. Note also that even if individual sectoral contributions from
manufacturing are low, total manufacturing altogether represents a sizable contribution to aggregate gains.

Source: Authors’ calculations.
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Figure A.9. Estimated Al adoption relatively to United States and Al Preparedness Index

14 ¢DEU

Al adoption rel. to US

8 .85 9 95 1
Al preparedness rel. to US

Note: The vertical axis reports the estimated ratio between US future adoption rate and future adoption for different countries, based on the
observed cross-country variation in current adoption rates. See more details in the text. The horizontal axis reports the Al Preparedness Index
(Cazzaniga et al., 2024), again relatively to US. The Al Preparedness index assesses the level of Al preparedness across based on a set of
macro-structural indicators that including digital infrastructure, human capital and labour market policies, innovation and economic integration,
and regulation and ethics.

Sources: Authors’ calculations relying on Eurostat (for capturing variation within European countries) and preliminary results from the Global

Forum on Productivity survey on Al use in companies (for capturing the variation across US, Europe, Canada and Japan; OECD, 2024b).
Cazzaniga et al. (2024)
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Figure A.10. Comparing Al's predicted macro-level productivity gains across studies and this
paper

Predicted increase in annual labour productivity growth over a 10-year horizon due to Al (in percentage points)

Baily, McKinsey Goldman IMF Aghlon and Bergeaud Acemoglu OECD

3.5

25

0.5

Brynjolfsson (2023, Global) Sachs (2024, UK) Comm|ssmn Bunel (2024, EA) (2024, USA) (2024, USA)
and Korinek (2023, USA) of France (2024, USA)
(2023, USA) (2024, FRA)

Note: When the source presents a range of estimates as the main result, the lower and upper bounds are indicated by striped areas. In cases
where modelling predictions primarily focus on TFP, labour productivity is obtained using simple assumptions about the aggregate capital
multiplier (Acemoglu, 2024; Aghion and Bunel, 2024; Bergeaud, 2024; our paper). The estimates refer to the countries shown in brackets.
Sources: See references at the end of the paper; for Goldman Sachs (2023), the underlying reference is Briggs and Kodnani (2023); for IMF
(2024) the underlying reference is Rockall, Pizzinelli and Tavares (2024); for OECD, the range from this paper's main scenarios are shown
(Table 2 last row in Section 3.1).

4. Derivation of Al exposure and adoption rates across different countries

4.1. Al exposure: from US ONET to ISIC

To derive sectoral Al exposure in terms of ISIC sectors, we start from Al exposure estimates from Eloundou
etal. (2024) at the level of ONET tasks. We use both their baseline beta measure and the gamma measure,
which accounts for extended capabilities. Eloundou et al. (2024) offer two types of exposure estimates:
those derived from human ratings of ONET’s Detailed Work Activities (DWAs) and task-level assessments
using GPT-4 APls. We focus on human-coded exposure variables. While the GPT-based measures offer
more granular insights, Eloundou et al. (2024) present the human-coded estimates as their primary
findings, arguing that the GPT-based results are less robust and more sensitive to prompt variations. We
combine this exposure data with task-level information on manual task intensity, sourced from Acemoglu
and Autor (2011).

For the US, we aggregate the task-level data to the occupational classification of SOC 2018 at the 6-digit
detail. We differentiate between core and non-core, supplemental tasks in occupations and assign a double
weight to core tasks (see more details in O*NET, 2023). Using the occupational composition of industries
from the BLS Occupational Employment and Wage Statistics (OEWS) survey, we aggregate this
information to NAICS 3-digit industries using employment weights. We then convert the NAICS 3-digit
classifications to ISIC 2-digit sectors by leveraging a crosswalk from the U.S. Census Bureau,
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corresponding NAICS 6-digit to ISIC 4-digit industries, incorporating employment data at the NAICS 3-digit
level. In cases where a single NAICS 6-digit code corresponds to multiple ISIC 4-digit codes, we first
distribute the employment evenly across the NAICS 6-digit codes within each NAICS 3-digit group, then
again equally across each ISIC 4-digit code corresponding to the same NAICS 6-digit code, generating
unique NAICS 6-digit-ISIC 4-digit cells with their associated employment estimates. Finally, we aggregate
the Al exposure to the NAICS 3-digit level and convert it to ISIC sectors using an employment-weighted
average across the NAICS 6-digit—ISIC 4-digit cells.

For EU countries, we first aggregate the task-level dataset to the 8-digit O*NET-SOC 2018 occupation
codes, again using core weights. We then convert these codes to SOC 2010 6-digit codes, for which a
crosswalk to ISCO 2008 4-digit codes is available from the BLS. To avoid double-counting, we follow the
methodology outlined by Dingel and Neiman (2020). When a SOC 2010 6-digit code maps to multiple
ISCO 4-digit codes, we allocate the U.S. employment weight of the SOC across the ISCO codes
proportionally to the ISCO employment shares in the respective EU country. This gives us unique SOC
2010 6-digit—ISCO 2008 4-digit cells. We then calculate the average Al exposure across all SOCs within
each ISCO 3-digit category, weighted by estimated employment in the SOC 2010 6-digit—ISCO 2008 4-
digit cells. Finally, we use an ad-hoc extraction of Eurostat microdata providing the composition of ISCO
3-digit occupations within ISIC 2-digit industries (with some aggregation to avoid overly granular cells with
too few units) to obtain a weighted average of Al exposure within ISIC sectors.

4.2. Al adoption: harmonising across countries

To estimate Al adoption rates across different countries and sectors, we draw on a combination of sources
to cover our target sample. For the U.S., our primary source is the Business Trends and Outlook Survey
(BTOS), from which we use estimated Al adoption data from November 2023, as well as projected adoption
for November 2024—representing one and two years after the introduction of ChatGPT. Sector-specific
adoption rates for the U.S. are based on NAICS 2-digit estimates from BTOS, converted to ISIC using the
methodology described earlier, which relies on the U.S. Census Bureau’s crosswalk between NAICS 6-
digit and ISIC 4-digit industries.

We calculate average Al adoption rates across BTOS waves from June to August 2024, with the exception
of agriculture, for which we use the latest available estimate from December 2023, adjusted by the average
growth in adoption (33%) up to mid-2024.

For the EU, the most recent Al adoption estimates come from Eurostat in 2023. However, Eurostat’s
definition of Al is broader than that used in BTOS, and the sample includes only firms with more than 10
employees. To align the two data sources, we use a global survey conducted by the OECD Global Forum
on Productivity (GFP) between May and August 2024. This survey provides Al adoption estimates for the
U.S. and several EU countries based on a harmonised set of questions posed to a representative sample
of employers. Using the relative adoption in the EU with respect to the U.S. from the GFP data, we ensure
the average Al adoption rate in the EU is comparable with that of the US. We then use cross-country
variation from Eurostat's to arrive at comparable estimates for individual EU countries.
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